Algorithm efficiency and asymptotic analysis: Big-Oh, Big-Omega, Big-Theta

- 1. Introduction to asymptotic analysis
- 2. Big-Oh
- 3. Big-Omega and Big-Theta
- 4. Analysis of insertion sort

1. Introduction to asymptotic analysis

Suppose algorithm *X* exists and *X* has input data whose size is *n*.

- **Q**: What is the goal of the asymptotic analysis of *X* produce?
- A: To describe how the running time of X depends on n.

Remark: 'running time' is traditional and misleading since

- asymptotic analysis used mostly for analyzing pseudocode
- pseudocode cannot be 'run' executed
- no 'times' can be measured from executing pseudocode

We will still use the traditional expression of 'running time'.

- **Q**: Why 'asymptotic'?
- A: We are interested in the behaviour of X as *n* becomes 'large'.

Let running time function f(n) be count of simple operations needed when X computes from start to finish.

More precise first question:

- **Q**: What is the goal of the asymptotic analysis of *X* produce?
- A: To describe how f(n) depends on *n* when *n* gets 'large'.

Example

Asymptotic: we can ignore all terms in f(n) except the fastest growing

Example

function f(n)	fastest growing term	function of interest for asymptotic analysis
f(n) = 2n + 100	zn	$\hat{f}(n) = an$
$f(n) = n^2/100 + 100n$	n²/100	$\hat{f}(n) = n^2/100$
$f(n) = n/10^3 + 200 \log_2(n)$	n/to^3	$\hat{f}(n) = n/to^3$
$f(n) = n^2 + 2^n$	2 ⁿ	$\hat{f}(n) = a^n$

For some algorithm we might have

$$f(n) = f_1(n) + f_2(n)$$

- for small $n, f_1(n)$ dominates $f_2(n)$
- for n large enough, $f_2(n)$ always dominates $f_1(n)$

In asymptotic analysis: ignore f_1

Remarks on asymptotic analysis

- other names: run time analysis, time-complexity analysis, growth rate analysis
- for two alternative algorithms X and Y, if fX(n) grows slower than fY(n), then X is 'better'
- we want lower and upper bounds on *f*(*n*)

2. Big-Oh

O(g(n)) is a set that contains functions.

Definition

 $O(g(n)) = \{f(n) : \text{there exist constants } c_1 > 0, n_0 > 0 \text{ such that } f(n) \le c_1 g(n), \text{ for all } n > n_0 \}$

Function f(n) belongs to O(g(n)), when there exists positive constants c_1 and n_0 , such that $f(n) \leq c_1 g(n)$ for all $n > n_0$.

Typical situation:

- we start f(n) and we want to find g(n) such that $f(n) \in O(g(n))$
- in principle we should find c_1 and n_0 to satisfy definition
- in practice we simply have to find fastest growing term in f_n $\mathfrak{f}(n)$

Example (contd)

$$f(n) = 2n + \frac{-10n^2 + 220n - 300}{n^2}, \quad n > 0$$

According to figure $f(n) \in O(n)$.

Example (contd)

function f(n)	fastest growing term	<i>O</i> (<i>g</i> (<i>n</i>)) for <i>f</i> (<i>n</i>)	
f(n) = 2n + 100	Jn	$f(n) \in O(n)$	
$f(n) = n^2/100 + 100n$	n ² /100	$f(n) \in O(n^2)$	
$f(n) = n/10^3 + 200 \log_2(n)$	$n/10^{3}$	$f(n) \in O(n)$	
$f(n) = n^2 + 2^n$	2"	$F(n) \in O(2^n)$	

Example Consider the following functions:

$$f_1(n) = 100n + 10^6 \qquad f_2(n) = n + 200\sqrt{n} \qquad f_3(n) = n^2 + 10^3 n$$

$$f_4(n) = n + n\log_2 n \qquad f_5(n) = n^{3/2} + 10^2 n + 10^7 \qquad f_6(n) = n + 100\log_2 n$$

<i>O</i> (<i>g</i> (<i>n</i>))	functions that belong to $O(g(n))$	functions that do not belong to $O(g(n))$
O(n)	f_{1}, f_{2}, f_{6}	f ₃ , f ₄ , f ₅
$O(n\log_2 n)$	F1, F2, F6, F4	f ₅ , f ₃
$O(n^2)$	f ₁ , F ₂ , F ₃ , F ₄ , F ₅ , F ₆	

Q: In previous example

$$f_1 \in O(n)$$
 and $f_1 \in O(n \log_2 n)$ and $f_1 \in O(n^2)$

Are they all correct? Which is the best in other words provides the most information?

A: They are all correct. The most information is provided by

$$f_1 \in O(n)$$

O() is an upper bound on growth and n grows slower than $n \log_2 n$ and n^2 .

Principle: smallest upper bound conveys the most information

Typical O()-classes encountered in algorithm analysis

O(g(n))-class	name	if algorithm X's $f(n)$ belongs to $O(g(n))$
<i>O</i> (1)	constant time	Algorithm X runs in constant time.
$O(\log_2 n)$	logarithmic time	Algorithm X runs in log time.
O(n)	linear time	Algorithm X runs in linear time.
$O(n \log_2 n)$	linearithmic time	Algorithm X runs in linearithmic time.
$O(n^2)$	quadratic time	Algorithm X runs in quadratic time.

These O()-classes can be put in order:

$O(1) \subset$	$O(\log n) \subset $	$O(n) \subset$	$O(n \log n) \subset$	$O(n^2)$
fastest	\rightarrow	\rightarrow	\rightarrow	slowest

Big-Oh is the most frequently quoted asymptotic result for different routines/procedures:

• C++ STL

https://alyssaq.github.io/stl-complexities/

https://github.com/gibsjose/cpp-cheat-sheet/blob/master/Data%20Structures%20and% 20Algorithms.md

Java Collections

https://gist.github.com/psayre23/c30a821239f4818b0709

python

https://wiki.python.org/moin/TimeComplexity

3. Big-Omega and Big-Theta

Big-Omega

 $\Omega(g(n))$ is a set that contains functions.

Definition

 $\Omega(g(n)) = \{f(n) : \text{there exist constants } c_2 > 0, n_0 > 0 \text{ such that } f(n) \ge c_2 g(n), \text{for all } n > n_0\}$

Function f(n) belongs to $\Omega(g(n))$, when there exists positive constants c_2 and n_0 , such that $f(n) \ge c_2 g(n)$ for all $n > n_0$.

Plot of big-Omega significance.

$$f(n) \in \mathcal{L}(h(n))$$

Example (contd)

$$f(n) = 2n + \frac{-10n^2 + 220n - 300}{n^2}, \quad n > 0$$

According to figure
$$f(n) \in \Omega(n)$$
.

 \square

Q: In the previous example we could have written

$$f(n) \in \Omega(n)$$
 or $f(n) \in \Omega(\sqrt{n})$ or $f(n) \in \Omega(1)$

Are they all correct? Which is the best in other words provides the most information?

A: They are all correct. The most information is provided by

$$f(n) \in \Omega(n)$$

 $\Omega()$ is a lower bound on growth and n grows faster than \sqrt{n} and 1.

Principle: largest lower bound conveys the most information

Order of big-Omega classes:

 $\Omega(n^2) \subset \Omega(n \log n) \subset \Omega(n) \subset \Omega(\log n) \subset \Omega(1)$

Big-Theta

 $\Theta(g(n))$ is a set that contains functions.

Definition

 $\Theta(g(n)) = \{f(n) : \text{there exist constants } c_1 > 0, c_2 > 0, n_0 > 0 \text{ such that}$ $c_2g(n) \le f(n) \le c_1g(n), \text{ for all } n > n_0\}$

If $f(n) \in O(g(n))$ and $f(n) \in \Omega(h(n))$ and g(n) = h(n), then $f(n) \in \Theta(g(n))$.

Plot of big-Theta significance.

$$f(n) \in \Theta(g(n))$$

Example (contd)

$$f(n) = 2n + \frac{-10n^2 + 220n - 300}{n^2}, \quad n > 0$$

From previous examples: $f(n) \in O(n)$ and $f(n) \in \Omega(n)$

Consequence: $f(n) \in \Theta(n)$

Interpretations for big-oh, big-omega when f(n) is running time function of some algorithm.

- $f(n) \in O(g(n))$ means f(n) will never grow faster than some multiple of g(n) (worst growth)
- $f(n) \in \Omega(h(n))$ means f(n) will never grow slower than some multiple of h(n) (best growth)
- Often when doing asymptotic analysis for an algorithm we obtain the following result:

 $f(n) \in O(g(n))$ and $f(n) \in \Omega(h(n))$ and $g(n) \neq h(n)$

Consequence: there is no $\Theta()$ result.

4. Analysis of insertion sort

We will form two running time functions for INSERTSORT by counting simple operations.

Simple operations:

- arithmetic operations: +, -, *, /
- if-statement, else-statement
- one iteration of for or while or for-each
- variable assignment
- accessing a single item in memory
- a single call to a procedure (NOT the execution of the procedure itself)

Assumption: each simple operation takes the same amount of time

n = A.length

Pseudocode

1	INSERTSORT(A)
2	input: number array A output: sorted array A
3	/* The numbers in input $A[1n]$ may be in any order. On output the
4	numbers in A are sorted from smallest to largest. $\ast/$
5	for j from 2 to A .length
6	$key = A[j], \ k = j$
7	while $k \ge 2$ and $A[k-1] > key$
8	A[k] = A[k-1], k=k-1
9	end
10	A[k] = key
11	end

$$f_{L} = (n-1) + 3(n-1)$$

$$f_{L} = (n-1) + 3(n-1)$$

$$= 8n - 8$$

$$f_{L} = (n-1) + 3(n-1)$$

$$+ 8 \sum_{k=1}^{n-1} k + n-1$$

$$k=1$$

$$= \frac{8n(n-1)}{2} + 5(n-1) = 4n^{2} + n-2$$

Results: $F_{L} \in \mathcal{N}(n)$ $f_{u} \in O(n^{2})$

In forming the counts we ignore nature of input data.

lower bound on count	upper bound on count
h-1	h-1
3 (n-1)	3 (n-1)
3 (n-1)	3 (1 + 2 + 3 + + n-1)
Ċ	5 (1 + 2 + + + n - 1)
n - 1	n - 1
= f	$\sum = f_{y}$
2 i = 1	$i = \frac{(h+1)n}{2}$
	lower bound n-1 3(n-1) 3(n-1) 0 n-1 $= f_{L}$ $\sum_{i=1}^{N}$

9

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

made by Frank Cameron

