
Algorithm efficiency and asymptotic analysis:
Big-Oh, Big-Omega, Big-Theta

1. Introduction to asymptotic analysis
2. Big-Oh
3. Big-Omega and Big-Theta
4. Analysis of insertion sort

1. Introduction to asymptotic analysis

Suppose algorithm X exists and X has input data whose size is n.

Q: What is the goal of the asymptotic analysis of X produce?

A: To describe how the running time of X depends on n.

Remark: ’running time’ is traditional and misleading since

• asymptotic analysis used mostly for analyzing pseudocode

• pseudocode cannot be ’run’ executed

• no ’times’ can be measured from executing pseudocode

We will still use the traditional expression of 'running time'.

Q: Why ’asymptotic’?

A: We are interested in the behaviour of X as n becomes ’large’.

Let running time function f(n) be count of simple operations needed when X computes from
start to finish.

More precise first question:

Q: What is the goal of the asymptotic analysis of X produce?

A: To describe how f(n) depends on n when n gets 'large'.

Example

When is n large?

Asymptotic: we can ignore all terms in f(n) except the fastest growing

Example

function f(n) fastest growing term function of interest for asymptotic analysis

For some algorithm we might have

Remarks on asymptotic analysis

• other names: run time analysis, time-complexity analysis, growth rate analysis

• for two alternative algorithms X and Y, if fX(n) grows slower than fY(n), then X is ’better’

• we want lower and upper bounds on f(n)

2. Big-Oh

Definition

Plot of big-oh

Example (contd)

function f(n) fastest growing term O(g(n)) for f(n)

Example (contd)

Example
Consider the following functions:

O(g(n)) functions that belong to O(g(n)) functions that do not belong to O(g(n))

Q: In previous example

Are they all correct? Which is the best in other words provides the most information?

A: They are all correct. The most information is provided by

Principle: smallest upper bound conveys the most information

Typical O()-classes encountered in algorithm analysis

Big-Oh is the most frequently quoted asymptotic result for different routines/procedures:

• C++ STL

https://alyssaq.github.io/stl-complexities/

https://github.com/gibsjose/cpp-cheat-sheet/blob/master/Data%20Structures%20and%
20Algorithms.md

• Java Collections

https://gist.github.com/psayre23/c30a821239f4818b0709

• python

https://wiki.python.org/moin/TimeComplexity

3. Big-Omega and Big-Theta

Definition

Big-Omega

Plot of big-Omega significance.

Example (contd)

Q: In the previous example we could have written

Are they all correct? Which is the best in other words provides the most information?

A: They are all correct. The most information is provided by

Principle: largest lower bound conveys the most information

Order of big-Omega classes:

Big-Theta

Definition

Example (contd)

Plot of big-Theta significance.

Interpretations for big-oh, big-omega when f(n) is running time function of some algorithm.

4. Analysis of insertion sort

We will form two running time functions for INSERTSORT by counting simple operations.

Simple operations:

• arithmetic operations: +, -, *, /

• if-statement, else-statement

• one iteration of for or while or for-each

• variable assignment

• accessing a single item in memory

• a single call to a procedure (NOT the execution of the procedure itself)

Assumption: each simple operation takes the same amount of time

In forming the counts we
ignore nature of input data.

line lower bound
 on count

upper bound
 on count

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

