Algorithm efficiency and asymptotic analysis:
Big-Oh, Big-Omega, Big-Theta

1. Introduction to asymptotic analysis
2. Big-Oh

3. Big-Omega and Big-Theta

4. Analysis of insertion sort

1. Introduction to asymptotic analysis

Suppose algorithm X exists and X has input data whose size is n.

Q: What is the goal of the asymptotic analysis of X produce?

A: To describe how the running time of X depends on n.

Remark: 'running time’ is traditional and misleading since
» asymptotic analysis used mostly for analyzing pseudocode
» pseudocode cannot be 'run’ executed

* no 'times’ can be measured from executing pseudocode

We will still use the traditional expression of 'running time'.

Q: Why "asymptotic’?

A: We are interested in the behaviour of X as n becomes ’'large’.

Let running time function f(n) be count of simple operations needed when X computes from
start to finish.

More precise first question:
Q: What is the goal of the asymptotic analysis of X produce?

A: To describe how f(n) depends on n when n gets 'large’.

Example

—10n2 + 220n — 300

f(n)=2n +

)
n=

When is n large?

For W \mrﬁe

~40n® ¥ 2200 -300

]
n

l

n>0

— - 10

55+ f(n) =2n+ (=10n* + 220n — 300)/(n?)

Asymptotic: we can ignore all terms in f(n) except the fastest growing

Example

function f(n)

fastest growing term

function of interest for asymptotic analysis

f(n) = 2n+100
f(n) = n?/100 4 100n
f(n) = n/10° +2001ogy(n)

f(n) = n?+ 20

AN

/100

h/103

4

n

For some algorithm we might have

f(n) = filn) + fa(n)

e for small n, fi(n) dominates fa(n)

e for n large cnough, fo(n) always dominates f(n)

In asymptotic analysis: ignore f

Remarks on asymptotic analysis

 other names: run time analysis, time-complexity analysis, growth rate analysis
« for two alternative algorithms X and Y, if fX(n) grows slower than fY(n), then X is 'better’

» we want lower and upper bounds on f(n)

2. Big-Oh

O(g(n)) is a sct that contains functions.

Definition

O(g(n)) = {f(n) : therc exist constants ¢; > 0,ng > 0 such that f(r) < ¢1g(n),for all n > ng}

Function f(n) belongs to O(g(n)), when there exists positive constants ¢; and ng, such that
f(n) < c1g(n) for all n > ny.

Plot of big-oh ¢,9(n)

fFln) € O(j(n)) F(n)

Typical situation:
e we start f(n) and we want to find ¢g(n) such that f(n) € O(g(n))
e in principle we should find ¢ and ng to satisfv definition

e in practicc we simply have to find fastest growing term in g4 § [h)

Example (contd)

60 -
f(n) = 2n + (=100 + 2200 — 300}/ (n?)
i 50 -
—10n* + 220n — 300
fln)=2n + 5 ; wel a0
mn
E30
According to figure f(n) € O(n). e
10}

D 00 5 1I0 1I5
n

30

Example (contd)

function f(n) fastest growing term O(g(n)) for f(n)
f(n) = 2n+100 an F(m) e O(n)
f(n) = n?/100 + 100 w2 /100 flme 0(n?)
f(n) = n/10° +200logy(n) a/yo Fn) € O(n)

fin) = n?+ 2" 2" flme O(a")

Example
Consider the following functions:

fi(n) = 100n + 10° fa(n) = n+200\/n f3(n) = n? + 10%n

fi(n) =n+nlog,n fs(n) = n32 +10%n + 107 fe(n) =n+100logyn

o(g(n)) functions that belong to O(g(n)) functions that do not belong to O(g(n))
O(n) o8 5 Fo by, ¥s

g ' ,Fz' Fo Ty Fs)t
O(n?) 91] 871) F3, h) ¥5,¥Q _

Q: In previous example

fi € O(n) and f; € O(nlogyn) and f; € O(n?)

Are they all correct? Which is the best in other words provides the most information?

For n \Grse 9-00\43‘1

c,9,(n) < c;9,0n)
Gmi\

C191(") < € 33(‘7)

A: They are all correct. The most information is provided by

f1 € O(n)

O() is an upper bound on growth and n grows slower than nlog, n and n?,

Principle: smallest upper bound conveys the most information

Typical O()-classes encountered in algorithm analysis

O(g(n))-class name if algorithm X's f(n) belongs to O(g(n))

1) constant time Algorithm X runs in constant time.

log, n) logarithmic time Algorithm X runs in log time.

O(n) lincar time Algorithm X runs in lincar time.
O(nlog, n) lincarithmic time Algorithm X runs in lincarithmic time.

n?) quadratic time Algorithm X runs in quadratic time.

501

40
30 3
_ These O()-classes can be put in order:
=
20
O(1) ¢ Oflogn) C O(n) C O(nlogn) C O(n?
fastest — — — slowest
10 -
0
0

Big-Oh is the most frequently quoted asymptotic result for different routines/procedures:
* C++ STL

https://alyssag.qgithub.io/stl-complexities/

https://github.com/qgibsjose/cpp-cheat-sheet/blob/master/Data%20Structures%20and%
20Algorithms.md

» Java Collections

https://qist.github.com/psayre23/c30a821239f4818b0709

* python

https://wiki.python.org/moin/TimeComplexity

3. Big-Omega and Big-Theta

Big-Omega

(2(g(n)) is a set that contains functions.

Definition

Q(g(n)) = {f(n) : there exist constants c3 > 0,ng > 0 such that f(n) > eag(n),for all n > ng}

Function f(n) belongs to €2(g(n)), when there exists positive constants ¢z and ng, such that
f(n) = c3g(n) for all n > ny.

Plot of big-Omega significance. £ (n)

F(n) € .ﬂ.(\ﬁ(ﬂ\) Ca)n(n)

Example (contd)

60
j'[u} = 2n + (—10142 + 2200 — 3(](]),-"{!#‘2]

50

—10n? + 220n — 300 s}
3 . m>0 _

gin) = 3n/2

fln) =20

n
20+

According to figure f(n) € Q(n). 10}

D 0 5 10 15 20 25 30
n

Q: In the previous example we could have written
f(n) € 2n) or f(n)eQvn) or f(rn)e Q1)

Are they all correct? Which is the best in other words provides the most information?

For n \0‘"’3"- e«\ov\j\u ¥(h)
¢, 9,(n) 7 ;900 €,9,(n)
Gﬂd C’aﬁg(h}
€1G,n) 7 €5 g5(n) “193(n)

8}

A: They are all correct. The most information is provided by

f(n) € Q(n)

2() is a lower bound on growth and n grows faster than /n and 1.

Principle: largest lower bound conveys the most information

Order of big-Omega classes:

Q(n?) ¢ Qnlogn) ¢ Qn) ¢ Qlogn) c Q1)

Big-Theta

O(g(n)) is a sct that contains functions.

Definition

B(g(n)) ={f(n) : there cxist constants ¢; > 0,¢y > 0,79 > 0 such that

cag9(n) < f(n) < e1g(n), for all n > ng}

If f(n) € O(g(n)) and f(n) € Q(h(n)) and g(n) = h(n), then f(n) € O(g(n)).

Plot of big-Theta significance. SPRY (h\

Fin)
fln) € © (8(“3)

C, 3(h)

Example (contd)

—10n% + 220n — 300

5 n>0

fln)=2n +

o)
From previous examples: f(n) € O(n) and f(n) € Q(n)

Conscquence: f(n) € O(n) O

Interpretations for big-oh, big-omega when f(n) is running time function of some algorithm.

e f(n) € O(g(n)) means f(n) will never grow faster than some multiple of g(n) (worst

growth)

e f(n) € (2h(n)) mecans f(n) will never grow slower than some multiple of h(n) (best

growth)
e Often when doing asyvmptotic analysis for an algorithm we obtain the following result:
f(n) € O(g(n)) and f(n) € Q(h(n)) and g(n) # h(n)

Conscquence: there is no ©() result.

4. Analysis of insertion sort

We will form two running time functions for INSERTSORT by counting simple operations.

Simple operations:

* arithmetic operations: +, -, *, /

* if-statement, else-statement

* one iteration of for or while or for-each
* variable assignment

* accessing a single item in memory

* a single call to a procedure (NOT the execution of the procedure itself)

Assumption: each simple operation takes the same amount of time

n = A.length In forming the counts we
ignore nature of input data.

Pseudocode
L DSHRISORT ine lower bound upper bound
2 input: number array A output: sorted array A on count on count
3 /% The numbers in input All.n] may be in any order. On output the
4 numbers in A arc sorted from smallest to largest. s/
5 for j from 2 to A.length n-
6 key = Alj], k= 5 n-t '
7 while & >2 and Afk—1] > key
8 Ak]=Ak-1], k=k-1
9 end G 3(“’1) 3(|‘\~T)
10 Alk] = key
11 end
T 3 (n-1) 3(tiars
" “0a * h - 1)
] {
)]
3 L [g O 5Ueay
vt h-1)
g n- h -1

F ot fno1) v 3(n-0) 5= f F,s ¢
¥ 3(n-1) ¥ (n-1)

= 8n-8 "
fyt (o) b 3(na) Zoisletn

u

n-1
I T A VP
k=1

= 8nln-1) 4 5(hea) s Yn'y n~9
2

Resulbs : FoeN(a) F, € 0(n)

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

