Breadth first search

1. Background

2. Data structures

3. Procedure

4. Results and interpretation

1. Background

At start: we have a digraph G = (V,E) and a starting node (source node) s from the digraph.

Goal: we want to know all nodes that are reachable from s.

One way to do this is by performing a graph search.

If all other nodes are reachable, then the search is also a traversal.

Reminders

e y is reachable from x when there is a directed path from x to y
| (x, y)
e yis adjacent to x when edge 42 exists

e a path’s length is the number of edges in the path

New: The distance 8(z, y) between from x to g is is the length of shortest path from x to y.

Example

® (&) o®
O F) D

X A B C 0 F N
adjacent to x D B C C,A,F' B F B,C C

reachable fromx | D B C C)AJD) C,A F 5‘F’ B:C) CJ A‘F
L)
AJF B)F' B, D C/A)D AJDIF D’B

paths from D to C | (DIF‘ B)C) (DJB‘C) (D‘F) C)
length ’ 3 3 2
5(0cy= 2 0

Results from Breadth-first-search (BFS):

e all reachable nodes from s
the distance 8(s.y) of all reachable nodes from s

e a rooted tree whose root is s which ineludes all reachable nodes from s (the BEF-tree)

2. Data structures

In a graph search a node is either discovered or undiscovered.

Q: What do we mean when we say a node x has been discovered?

A: We mean that a path from s to x has been found.

In any graph search
- start with all nodes undiscovered, except s
- progress is made by moving along edges and discovering nodes that have been undiscovered

- graph searches differ in the order in which they move along edges

In BFS the status of a node is monitored by assigning it a color:
- a white node is undiscovered

- a gray node has been discovered, but it may have adjacent nodes that are undiscovered
(white)

- a black node has been discovered and all nodes adjacent to it have been discovered (either
gray or black)

Note: progression of a node's color: white —» gray — black

To perform BFS, for each node we have the following attributes:

e 1.d distance of node x from source s: x.d = d(s, =)
o r.eolour = color of node
o r.m = parent of node x in BF tree

o . Adj set containing nodes that are adjacent to x

In BFS we maintain a queue of gray nodes.

A queue is a one-dimensional data structure that has two ends: the head (front end) and the talil
(back end).

Let Q be a queue. There are two basic operations:

o ENQUEUE((). x): item x is put into ¢ at the tail

o DEQUEUE((): the item at the head of () i5 removed and returned

A gueue is said to function on a first-in-first-out (FIFO) basis.

Example

Start with empty queue: Q: tail head
operation queue
ENQUEUE(Q, 7) tail 3 | head
ENQUEUE(Q, 2) tail a | 3 | head
DEQUEUE(Q) tail 3 head
ENQUEUE(Q, 4) tail g 2 head

3. Procedure

Description of BFS:

Q: How do we know that there are still nodes that are reachable from s?

BREADTH-FIRST-SEARCH

1.
2.
3.
4.

Mark = as discovered. Mark the distance as d=1,

Discover all nodes that are a distance of 4 from s.

Add 1 to 4.

If there are still nodes that are reachable from s,

repeat steps 2 and 3.

then

Pseudocode:
1 BREADTH-FIRST-SEARCH(s,)
2 executes a breadth first search on graph G starting from
3 source node s
4
1 forEach node = in G
G r.color white , r.d =00, z.m=NIL
7 end
8
a '+ Give source node appropriate values. =,
10 s.color gray ., sd=0
11 > initialize a queue in
12 ENQUEUE(Q .5)
13 while @@ is not empty
14 x = DEQUEUE((})
15
16 forEach node y in x Adj
17 if y.eolor == white then
I8 [+ Node y is undiscovered. =/
19 y.color = gray ., yd=zd+1, yr=x
20 ENQUEUE(Q ,y)
21 end
22 end
23 r.eolor = hlack
24 end

Remarks

1. The entire graph G is given as an argument. This is intended to represent the set of vertices V
and the adjacency sets x.Adj for each node.

2. Initialization is done in forEach loop of line 5.
3. Atline 12, s is the only element in Q. Hence in the first iteration of the while loop, x = s.
4. In each iteration of the while loop

- X is removed from Q

- all nodes adjacent to x are investigated in the forEach loop of line 16

- x is eventually colored black

5. A node can only be added once to Q.

Example

® (&) o
S)

Execute BREADTH-FIRST_SEARCH with s =D

while-loop iteration
item

0 1 2 3 4
Q D F 1B C|F C A
Ad o0 o * = i
B.d o i 1 1 1 Q e e‘
C.d o oo a 2 P
D.d 0 G 0 ° ° O ®
F.d ob 1 ! ! 1 @
H.d o> b “ = il
A NIL NIL NIL NIL C
B.x NIL D D D D
cn NIL NIL B B B
Do NIL NIL NIL NIL NIL
E o NIL D D D D
o NIL NIL NIL NIL NIL
A.color white white white white gray
B.color white gray black black black
C.color white white gray gray black
D.color gray black black black black
F.color white gray gray black black
H.color white white white white white

Final results:

X A B C D F H
x.d 3 1 2 0 1 0
XT C D B NIL D NIL
x.color
black black black black black white

4. Results and interpretation

Q: How do we know that x.d is the length of the shortest path from s to x, (s, X)?

A: The nodes are put into the queue Q in increasing order of the their distance.

From example:

Q: | p C F B D
30.0\ 3 p] 1 1

Q: How do we know what nodes are reachable from s?
Al: If X is reachable from s then x.color is not white.

A2: If x is reachable from s then x.d is not .

Q: How can we construct the BF-tree?

A: The root is s. For each node X, we can construct the reverse path (from x to s) using
parent attribute x.x.

o C D B NIL D NIL

BF-tree from example: G ,
(®)

Remark: The paths from s to x is the shortest length path. (There may be other paths that
are as short, but none that are shorter.)

Q: Can we use Breadth-first-search on an undirected graph?
A: Yes.

Remarks for undirected graph:
- if x belongs to y.Adj, then y belongs to x.Ad]

- if x is reachable from s, then s is reachable from x

- x.d is the distance both from s to x and from xto s

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

