
Breadth first search

1. Background
2. Data structures
3. Procedure
4. Results and interpretation

1. Background

At start: we have a digraph G = (V,E) and a starting node (source node) s from the digraph.

Goal: we want to know all nodes that are reachable from s.

One way to do this is by performing a graph search.

If all other nodes are reachable, then the search is also a traversal.

Reminders

New:

Example

x

adjacent to x

reachable from x

paths from D to C

length

Results from Breadth-first-search (BFS):

2. Data structures

In a graph search a node is either discovered or undiscovered.

Q: What do we mean when we say a node x has been discovered?

A: We mean that a path from s to x has been found.

In any graph search

 - start with all nodes undiscovered, except s

- progress is made by moving along edges and discovering nodes that have been undiscovered

- graph searches differ in the order in which they move along edges

In BFS the status of a node is monitored by assigning it a color:

- a white node is undiscovered

- a gray node has been discovered, but it may have adjacent nodes that are undiscovered
(white)

- a black node has been discovered and all nodes adjacent to it have been discovered (either
gray or black)

Note: progression of a node's color: white  gray  black

To perform BFS, for each node we have the following attributes:

In BFS we maintain a queue of gray nodes.

A queue is a one-dimensional data structure that has two ends: the head (front end) and the tail
(back end).

A queue is said to function on a first-in-first-out (FIFO) basis.

Example

tail head

operation queue

Start with empty queue: Q:

ENQUEUE(Q, 7)

ENQUEUE(Q, 2)

DEQUEUE(Q)

ENQUEUE(Q, 4)

tail head

tail head

Let Q be a queue. There are two basic operations:

tail head

tail head

3. Procedure

Description of BFS:

Q: How do we know that there are still nodes that are reachable from s?

Pseudocode:

Remarks

1. The entire graph G is given as an argument. This is intended to represent the set of vertices V
and the adjacency sets x.Adj for each node.

2. Initialization is done in forEach loop of line 5.

3. At line 12, s is the only element in Q. Hence in the first iteration of the while loop, x = s.

4. In each iteration of the while loop
 - x is removed from Q
 - all nodes adjacent to x are investigated in the forEach loop of line 16
 - x is eventually colored black

5. A node can only be added once to Q.

Example

Execute BREADTH-FIRST_SEARCH with s = D

while-loop iteration
item

A.d

B.d

C.d

D.d

F.d

H.d

A.

B.

C.

D.

F.

H.

A.color

B.color

C.color

D.color

F.color

H.color

0

Q

1

NIL

NIL

NIL

NIL

NIL

NIL

white

white

white

gray

white

white

white

gray

white

black

gray

white

NIL

D

NIL

NIL

D

NIL

2

white

black

gray

black

gray

white

NIL

D

B

NIL

D

NIL

3

NIL

D

B

NIL

D

NIL

white

black

gray

black

black

white

4

gray

black

black

black

black

white

C

D

B

NIL

D

NIL

4. Results and interpretation

Final results:

x A B C D F H

x.d

x.

x.color

Q: How do we know that x.d is the length of the shortest path from s to x, s, x)?

A: The nodes are put into the queue Q in increasing order of the their distance.

3 1 2 0 1 

C D B NIL D NIL

black black black black black white

From example:

Q: How do we know what nodes are reachable from s?

A1: If x is reachable from s then x.color is not white.

A2: If x is reachable from s then x.d is not .

Q: How can we construct the BF-tree?

A: The root is s. For each node x, we can construct the reverse path (from x to s) using
parent attribute x.

Remark: The paths from s to x is the shortest length path. (There may be other paths that
are as short, but none that are shorter.)

Q: Can we use Breadth-first-search on an undirected graph?

A: Yes.

Remarks for undirected graph:
 - if x belongs to y.Adj, then y belongs to x.Adj

 - if x is reachable from s, then s is reachable from x

- x.d is the distance both from s to x and from x to s

x A B C D F H

x. C D B NIL D NIL

BF-tree from example:

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

