Algorithm efficiency and asymptotic analysis:
best case, worst case, average case

1. Best case, worst case, average case
2. Binary search
3. Insertion sort

1. Best case, worst case, average case

Suppose algorithm X exists and X has input data whose size is n. Suppose the running time
function of X is f(n).

Q: With regard to the input data, what is the best case for algorithm X ?

A: The best case input data is that for which the asymptotic growth of f(n) is as least as small as
that of any other input data.

Q: With regard to the input data, what is the worst case for algorithm X ?

A: The worst case input data is that for which the asymptotic growth of f(n) is as least as
large as that of any other input data.

For best cases and the worst cases one should always be able to provide examples.

Focus on worst case (usually):
- gives a guarantee on how bad f(n) can be

- worst case can often occur e.g. searching for data that does not occur

Average case is more difficult

- there is no one average case, rather proabilities are associated with input data

- requires probabilitistic analysis to obtain asymptotic results

- often must make assumptions on probability distribution of input data

2. Binary search

Iterative pseudocode for binary search

20

BINSEARCHI(A ,L R key)
input A[l.n] is an array containing numbers; L and R arc the
leftmost and rightmost indices that concern us; key is the valuc
we want to find
output: the index at which key occurs A or —1
/#* The numbers in A must be in order from smallest to largest.
We scarch in array A[L..R] for key. If key is found, we return
its location, otherwise we return —1.%/
while L < R
mid = [(L + R)/2|
if key == A[mid] then
return mid
else
if A[mid] > key then
R=mid
else
L =mid+ 1
end
end
end
return —1

Input data assumptions:
- sorted input array A[1..n] from smallest to largest

-L=1,R=nandn>1.

Q: What is best case input data?
A: Line 9 while-loop is only executed once.

When possible: first iteration of while-loop results in A[mid] = key

Q: Is best case possible?

A: Yes.

- | —20 —18 —b

o
|
)

key = -6

Running time function for best case:

f(n) = C where © 15 & Pom{‘we consjfo.vs‘r

Big-Omega and Big-Oh for best case? Q) (1) , (1)

Big-Theta for best case? (3 1)

Q: What is worst case input data?

A: Line 9 while-loop is executed as many times as necessary, until L >= R.
Let k be necessary number of iterations.

n |4 G 8 T4 16 1240 1000
kuntil L>=R
_kuntil L > l N 5 3 y 4 N 1o
n k
— = = P = = =
X] n = k \Oﬁlh

Q: Is worst case possible?
A: Yes.

e.g. key < A[1]

Running time function for worst case:

fn)= ¢ \091 n

ﬂ(|03ah)

Big-Omega and Big-Oh for worst case? 0 (\oj 3 n)
)

Big-Theta for worst case? 9 (l03 2 h)

3. Insertion sort

Pseudocode
1 INSERTSORT(A)
2 input: number array A output: sorted array A
3 /* The numbers in input A[l.n| may be in any order. On output the
4 numbers in A arc sorted from smallest to largest. x/
5 for j from 2 to A.length
6 key = Alj], k=73
7 while £ >2 and Alk— 1] > key
8 Akl =Ak-1], k=k-1
9 end
10 Alk] = key
11 end

n = Alength
Previously for entire procedure we obtained lower bound and upper bound on running time:
¥L=8h~8 [= %0ty n~9
Q: What is best case input data?

A: Case where f(n) is fL.

Q: Is best case possible?
A: Yes.

If input array A[1..n] is already sorted from smallest to largest.

Big-Omega and Big-Oh for best case? Big-Theta for best case?

O('ﬂ, N.(n), 8(n)

Q: What is worst case input data?

A: Case where f(n) is fU.

Q: Is worst case possible?

A: Yes.

If input array A[1..n] is in reverse order from largest to smallest.

Big-Omega and Big-Oh for worst case? Big-Theta for worst case?

O(V‘R] ..ﬂ—(ha) @(na)

J J

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

