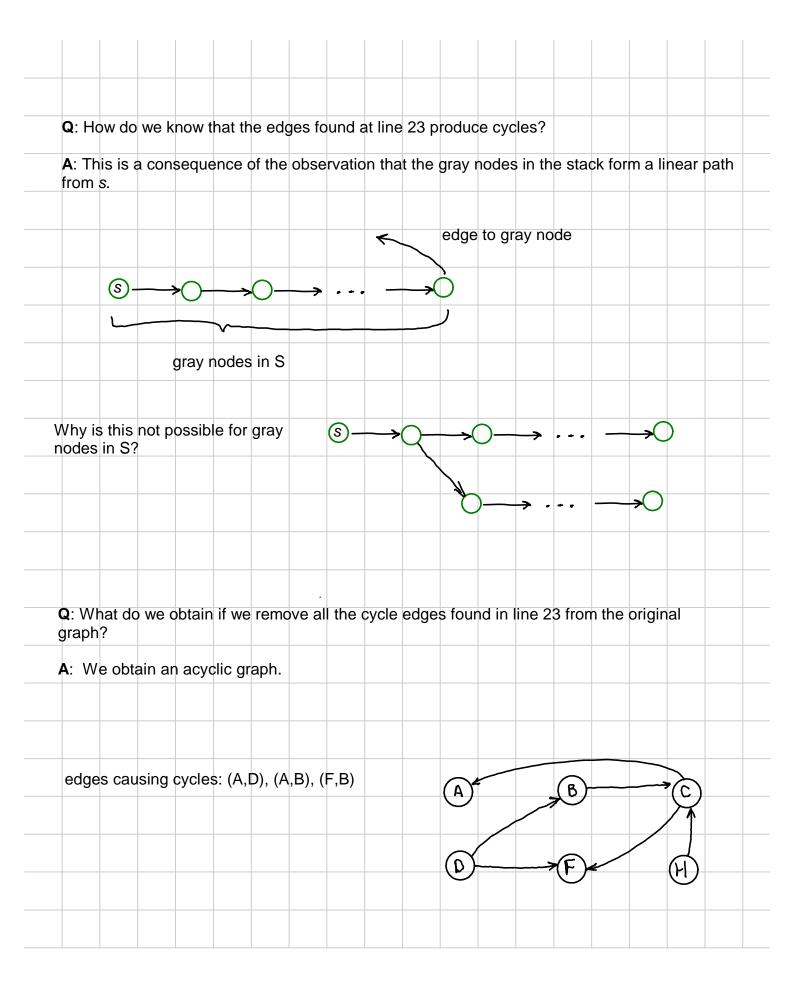

Depth first search 1. Background 2. Data structures 3. Procedure 4. Results and interpretation 1. Background At start: we have a digraph G = (V, E) and a starting node (source node) s from the digraph. Goal: we want to know all nodes that are reachable from s. One way to do this is by performing a graph search. If all other nodes are reachable, then the search is also a traversal. Reminders • y is reachable from x when there is a directed path from x to y• y is adjacent to x when edge (x, y) exists • a simple cycle is a path $\langle a_0, a_1, \ldots a_k \rangle$ where $a_k = a_0$ and no other nodes are repeated Example >(B Α С D H

x	A	В	C.	0	F	Н
adjacent to x	D, B	C	A,F	B _i F	в	С
reachable from x	D ₁ B ₃ C ₃ A ₁ F	с, А, С В, Г), C,A,F B,D	, B,F, C,A,D	B,C, A,D,F	C, A, F F D, B
some cycles:	< А, В, С,	A> ,	< A, D,	F, B, C, A	>	
Results from Depth-	first-search	(DFS):				
• all reachable	nodes from	e				
• detection of s	simple cycles	s in the dig	540 MAR (200			
	simple cycles whose root	s in the dig	540 MAR (200	reachable noo	les from s ((the DF-tree)
detection of s o a rooted tree	whose root	s in the dig is <i>s</i> which 4 states:	includes all			
detection of s a rooted tree 2. Data structures In DFS a node can b (i) undetected, (ii) de handled. Q: What do we mean	whose root whose root e in one of etected and	s in the dig is <i>s</i> which 4 states: undiscove	includes all ered, (iii) d x has bee	iscovered or	(iv) discove	
detection of s a rooted tree 2. Data structures In DFS a node can b (i) undetected, (ii) de handled.	whose root whose root e in one of etected and	s in the dig is <i>s</i> which 4 states: undiscove	includes all ered, (iii) d x has bee	iscovered or	(iv) discove	

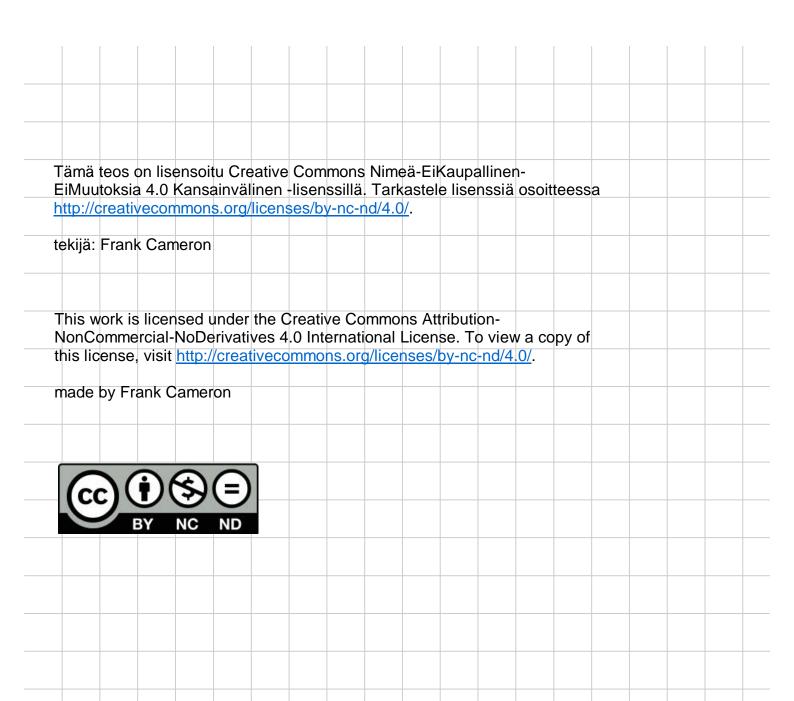
A: We	e mean	that	xis	adiac	ent to	and	de th	at has	s bee	n disc	over	ed. bu	t that	xha	s not	vet b	en
	vered.			,								,				,	
Q : Wh	nat do v	ve m	ean	when	we s	ay a	node 2	x has	been	disco	overe	d and	hand	lled?			
A : We	e mean	that	<i>x</i> ha	s bee	n diso	cover	ed an	d all i	nodes	s adja	cent	to <i>x</i> ha	ave b	een o	discov	vered.	
in DF	s																
- star	t with a	ıll no	des	undet	ectec	and	undis	covei	red, e	xcept	s						
	ress is r undis			movi	ng al	ong e	edges	and o	discov	vering	node	es tha	t hav	e bec	en uno	detect	ed
- the s	status c		node	is mo	nitore	ed us	ing a s	stack	and	colors						_	
• If >	status c x is und	of a r letec	ted,	then i	t is w	hite a	and it	is not	t on th	ne sta	ck.						
• lf x • lf x	x is und x is dete	of a r letec ectec	cted, d but	then i undis	t is w cove	hite a red, t	and it then it	is not is wł	t on th hite ai	ne sta nd it is	ck.	he sta	ıck.				
● lf メ ● lf メ ● lf メ	x is und	of a r letec ectec cove	eted, d but red, t	then i undis hen it	t is w cove is gr	hite a red, t ay ar	and it then it nd it is	is not is wh on th	t on th hite ai he sta	ne sta nd it is ick.	ck. s on t						
• lf > • lf > • lf >	x is und x is dete x is disc	of a r letec ectec cove	eted, d but red, t	then i undis hen it	t is w cove is gr	hite a red, t ay ar	and it then it nd it is	is not is wh on th	t on th hite ai he sta	ne sta nd it is ick.	ck. s on t						
• If > • If > • If > • If >	x is und x is dete x is disc x is disc	of a r letec ectec cove cove	eted, d but red, t red a	then i undis hen it nd ha	t is w cove is gr indleo	hite a red, t ay ar	and it then it nd it is	is not is wh on th	t on th hite ai he sta	ne sta nd it is ick.	ck. s on t						
 If > If > If > If > Note: 	x is und x is dete x is disc	of a r letec ectec cove cove	eted, d but red, t red a	then i undis hen if nd ha a nod	t is w cove is gr ndleo e:	hite a red, 1 ay ar d, the	and it then it nd it is en it is	is not is wh on th blach	t on th hite ai he sta k and	ne sta nd it is nck. it is n	ck. s on t ot on	the s	tack.	on st	tack)		
 If > If > If > If > Note: 	x is und x is dete x is disc x is disc : progre	of a r letec ectec cove cove	eted, d but red, t red a	then i undis hen if nd ha a nod	t is w cove is gr ndleo e:	hite a red, 1 ay ar d, the	and it then it nd it is en it is	is not is wh on th blach	t on th hite ai he sta k and	ne sta nd it is nck. it is n	ck. s on t ot on	the s	tack.	on st	tack)		
 If > If > If > If > If > If > 	x is und x is dete x is disc x is disc x is disc x not o	of a r letec cove cove cove	etted, d but red, t red a n of a ack) -	then i undis hen it nd ha a nod → (wh	t is w cove is gr ndleo e: nite, c	hite a red, 1 ay ar d, the	and it then it nd it is n it is	is not is wh on th black	t on th nite an ne sta a and	ne sta nd it is ck. it is n stack	ck. s on t ot on $(x) \rightarrow$	the s	tack.	on st	tack)		
 If > If > If > If > If > If > 	x is und x is dete x is disc x is disc : progre	of a r letec cove cove cove	etted, d but red, t red a n of a ack) -	then i undis hen it nd ha a nod → (wh	t is w cove is gr ndleo e: nite, c	hite a red, 1 ay ar d, the	and it then it nd it is n it is	is not is wh on th black	t on th nite an ne sta a and	ne sta nd it is ck. it is n stack	ck. s on t ot on $(x) \rightarrow$	the s	tack.	on st	tack)		
 If > If > If > If > If > If > 	x is und x is dete x is disc x is disc x progre e, not o	of a r letec ectec cove cove ession ession sta	eted, d but red, t red a on of a ack) -	then i undis hen it nd ha a nod → (wh	t is w cove is gr ndleo e: nite, c	hite a red, 1 ay ar d, the	and it then it nd it is n it is	is not is wh on th black	t on th nite an ne sta a and	ne sta nd it is ck. it is n stack	ck. s on t ot on $(x) \rightarrow$	the s	tack.	on si	tack)		
 If > If > If > If > If > If > 	x is und x is dete x is disc x is disc c progre e, not o form Df	of a r letec ected cove cove essio n sta	ted, d but red, t red a on of a ack) -	then i undis hen it nd ha a nod → (wh ch no	t is w cove is gr ndled e: nite, c	hite a red, t ay ar d, the	and it then it nd it is n it is ve the	is not is wh on th black	t on th nite an ne sta a and	ne sta nd it is ck. it is n stack	ck. s on t ot on $(x) \rightarrow$	the s	tack.	on st	tack)		
 If > If > If > If > If > If > 	x is und x is dete x is disc x is disc x is disc r progre e, not o form Df • x.c • x.π	of a r letected cove cove ession FS, f	red, td butred, tred aon of aack) -for ea $r = co$	then i undis hen it nd ha a nod a nod → (wh ch no olor of of no	t is w cove is gr ndled e: nite, c ode w node	hite a red, t ay ar d, the on sta	and it then it nd it is n it is ve the	is not is wh on th black (gra	t on th nite an ne sta (and ay, on wing a	ne sta nd it is it is n stack	ck. s on t ot on $(x) \rightarrow$	the s	tack.	on st	tack)		

In DFS we maintain a stack of gray and white no A stack is a one-dimensional data structure that A stack S has two basic operations; • PUSH(<i>S,x</i>): places (pushes) item <i>x</i> onto top of • POP(<i>S</i>): removes and returns item from top of stack is said to function on a last-in-first-out (LIF Example Start with empty stack: S: top operation s PUSH(<i>S</i> , 7) top	has top. stack stack	
A stack S has two basic operations; • PUSH(S,x): places (pushes) item x onto top of • POP(S): removes and returns item from top of stack is said to function on a last-in-first-out (LIF Example Start with empty stack: S: top operation s	stack	
PUSH(<i>S</i> , <i>x</i>): places (pushes) item <i>x</i> onto top of POP(<i>S</i>): removes and returns item from top of stack is said to function on a last-in-first-out (LIF Example Start with empty stack: S: top operation	stack D) basis.	
POP(S): removes and returns item from top of stack is said to function on a last-in-first-out (LIF Example Start with empty stack: S: top operation	stack D) basis.	
stack is said to function on a last-in-first-out (LIF Example Start with empty stack: S: top operation s	D) basis.	
Example Image: Start with empty stack: S: top Operation Image: Start with empty stack: S: top		
Start with empty stack: S: top	Image:	
operation s		
PUSH(<i>S</i> , 7) top		
	7	
PUSH(S, 2) top	2 7	
POP(S)	→	
PUSH(<i>S</i> , 4) top		

3	. Procedure					
	Description of DFS:					
		 ТТ			3_	
	DEPTH-FIRST-SEARC 1 . Mark <i>s</i> as disco		- S		_	
	2. Mark x as disco		0.			
	3 . If x has at least	ast one undisc	overed adja	cent node y	Γ, –	
	then move along ϵ	edge (x,y) to y	and set $x =$	y. Return	to step 2.	
	4. If x has no un					
	5. If x has no un					
	move back to u all Set $u = x$ and retu		via which a	t was disco	vera.	
			1 1 1			
V	hen we perform step	3, we are movir	ng forward.			
v	Vhen we perform step	5 we are movir	ng backward	(or backtrac	kina)	
			goadhnara		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Exai	nple:					
star	ing node: s = D					
		(A)=	→ <u>(B)</u>	(C)		
		×				
		(0)(0)	->(F)e	(H)		
\mathbf{x}	x discovered (gray	/) (x	x disco	overed and h	nandled (black)	
\bigcirc	(gray					


Pseudo	
	code:
1	DEPTH-FIRST-SEARCH (s, G)
2	executes a depth first search on graph G starting from
3	source node s
4	for Table as in C
5 6	forEach node x in G
7	$x.color = white, x.\pi = NIL$ end
8	
9	⊳ initialize a stack in S
10	PUSH(S,s)
11	while S is not empty
12	x = POP(S)
13	
14	/* If x is white, then it has not yet been discovered.*/
15	if $x.color ==$ white then
16	/* x is discovered. Put x back into the stack and
177	investigate nodes adjacent to $x.*/$
17 	$x.color = \operatorname{gray}, \operatorname{PUSH}(S, x)$
18	forEach node y in x.Adj
20	if $y.color ==$ white then
21	$PUSH(S,y) , \ y.\pi = x$
22	else if $y.color ==$ gray then
23	\triangleright a cycle that includes edge (x,y) exists
24	end
25	end
26	end
27 28	else de la companya
28	x.color = blackend
	ena
29	end
	end in a
29	end
29	

Remarks									
1. Choose Iower down			stack S	6. The pa	th from s to	o <i>x</i> can alw	ays be four	nd from node	es
2. All gray i greatest 'de		ne stack S	form a	linear pat	th starting	from s out	to the gray	node of the	
3. The pare correspond					s at line 21	I. The fina	time when	it is set	
- When mo on the follo			olored	gray at on	e iteration	of the whi	e-loop and	<i>y</i> is colored	gra
- When mo node z curr			POP a	white noc	le <i>x</i> at line	12 that is	adjacent to	the deepest	gr
	x is white	and it is c	olored		is gray and		ed black		
- A nod - A blac	e will be a k node is	dded to th never add	e stack ed to th	as a gray ne stack.	/ node only	once.			
Example									•
						A	B		
Example Execute DEF	PTH-FIRS	T-SEARCH	l with s	r = D			B		
	PTH-FIRS	T-SEARCH	l with s	r = D			B		
	PTH-FIRS	T-SEARCH	l with s				B		


						0	black node
	while-l	loop iteration				0	gray node
item	0	1	2	3	4		9.0,
S	D	B,F,D	C,B,F,D	A,F,C,B,	F,D A,F,C	,B,F,D	
<i>x</i>		D	В	С	A		
Α.π	NIL	NIL	NIL	С	С	A	
Β.π	NIL	D	D	D	D		
С.π	NIL	NIL	В	В	В	0	
D.π	NIL	NIL	NIL	NIL	NIL		
F .π	NIL	D	D	С	С		
Η.π	NIL	NIL	NIL	NIL	NIL		
A.color	white	white	white	white	gray		
B.color	white	white	gray	gray	gray		
C.color	white	white	white	gray	gray		
D.color	white	gray	gray	gray	gray		
F.color	white	white	white	white	white		
H.color	white	white	white	white	white		
cycle edge					(A,D), (A,B)		
					(A,B)		

					0	black node
	while-loop it	eration			0	gray node
item	4	5	6	7		gray near
S	A,F,C,B,F	F,D F,C,B,F,	D F,C,B,F,D	C,B,F,D		
X	A	A	F			
			0	F	<u>A</u>	
Α.π	С	C	C D	С		
Β.π	B	B	B	D	(0)	Fe
С.π	NIL	NIL	NIL	В		
D.π	C	C	C	NIL		
F.π	NIL	NIL	NIL	С		
Η.π				NIL		
A.color	gray	black	black	black		
B.color	gray	gray	gray	gray		
C.color	gray	gray	gray	gray		
D.color	gray	gray	gray	gray		
F.color	white	white	gray	black		
H.color	white	white	white	white		
cycle edge	(A,D), (A,B)		(F,B)			
	(A,D)					

	ults:						
x	Α	В	С	D	F	н	
Χ.π	С	D	В	NIL	С	NIL	
x.color	black	black	black	black	black	white	
edges o	ausing cy	cles: (A,D),	(A,B), (F,B))			
4. Resu	Its and iu	nterpretat	ion				
Q : How d	o we know	what node	s are reach	able from s?			
A : If <i>x</i> is r	eachable 1	from s then	<i>x.color</i> is bl	ack.			
Q : How ca	an we proc	duce the DF	-tree?				
	-tree can	be made us	sing the par	ent attributes	$x.\pi$ of the	nodes.	
		A					
A: The DF		A c	2 ⁸ Fe	C			

Q : C	an we	use	Deptl	n-first	-sear	ch on	an u	ndirea	cted c	raph?	?						
A : Y																	
	arks	for	ndire	otod	aras												
- if)	cbeloi	ngs to	y.Ac	dj, the	n y be	ı. əlong	s to <i>x</i>	Adj									
- if 2	cis rea	achab	ole fro	om s,	then a	s is re	acha	ble fr	om x								
- all	edges	in gr	aph a	are ei	ther tr	ee eo	dges (or edg	ges th	at ca	use (ı	undire	ected)	cycl	es		
		-	-														
							1	1							1	1	1

