Depth first search

1. Background

2. Data structures

3. Procedure

4. Results and interpretation

1. Background

At start: we have a digraph G = (V,E) and a starting node (source node) s from the digraph.

Goal: we want to know all nodes that are reachable from s.

One way to do this is by performing a graph search.

If all other nodes are reachable, then the search is also a traversal.

Reminders
e y is reachable from & when there is a directed path from x to y
e y is adjacent to x when edge (z.y) exists

o a simple cycle is a path (ag, a1, ... a;) where @, = ag and no other nodes are repeated

Example

™) (®) (D
) F) O



A B C 0 F H

X
adjacent to x D\ B C A,f:‘ & F () C
reachable fromx | p B)C) c) A) D) c, A‘F') B\FI BJC) CJ A‘ F

]
A F B, F B D C,AD ADF DB

<asc AY <ADFBC AD a

some cycles:

Results from Depth-first-search (DFS):

o all reachable nodes from s
o detection of simple eveles in the digraph

e a rooted tree whose root is s which includes all reachable nodes from s (the DI*-tree)

2. Data structures

In DES a node can be in one of 4 states:
(i) undetected, (ii) detected and undiscovered, (iii) discovered or (iv) discovered and

handled.

Q: What do we mean when we say a nhode x has been discovered?

A: We mean that a path from s to x has been found.



Q: What do we mean when we say a node x has been detected and undiscovered?

A: We mean that x is adjacent to a node that has been discovered, but that x has not yet been
discovered.

Q: What do we mean when we say a node x has been discovered and handled?

A: We mean that x has been discovered and all nodes adjacent to x have been discovered.

In DFS
- start with all nodes undetected and undiscovered, except s

- progress is made by moving along edges and discovering nodes that have been undetected
and/or undiscovered

- the status of a node is monitored using a stack and colors
o |[f x is undetected, then it is white and it is not on the stack.
o |f X is detected but undiscovered, then it is white and it is on the stack.

o If X is discovered, then it is gray and it is on the stack.
e If X is discovered and handled, then it is black and it is not on the stack.

Note: progression of a node:
(white, not on stack) — (white, on stack) — (gray, on stack) — (black, not on stack)

To perform DFS, for each node we have the following attributes:

e r.colour = color of node
e r.7 = parent of node x in DF tree

e 1. Adj set containing nodes that are adjacent to z



In DFS we maintain a stack of gray and white nodes.

A stack is a one-dimensional data structure that has top.
A stack S has two basic operations;
e PUSH(S,x): places (pushes) item x onto top of stack

¢ POP(S): removes and returns item from top of stack

A stack is said to function on a last-in-first-out (LIFO) basis.

Example

Start with empty stack: S top
operation Jtack
PUSH(S, 7) top +
PUSH(S, 2) top ]
POP(S)

top !

PUSH(S, 4)

top L}.‘ p!




3. Procedure

Description of DFS:

DEPTH-FIRST-SEARCH

1. Mark s as discovered. Set z=s.

2. Mark = as discovered.

3. If = has at least one undiscovered adjacent node y,

then move along edge (xr,y) to y and set xz=y. Return to step 2.
4. If = has no undiscovered adjacent nodes and z=s, then stop.
5. If x has no undiscovered adjacent nodes and z+#s, then

move back to u along edge (u,x) via which # was discoverd.

Set u=wx and return to step 3.

When we perform step 3, we are moving forward.

When we perform step 5, we are moving backward (or backtracking).

Example:

starting node: s=D

(®) (&) (©)
© ® D,

@ x discovered (gray) @ x discovered and handled (black)



orward: (8) (©)
(®) ® ()
3. forward: Qﬂe
e
®) ® ()
= o eﬁ ©
(®) F)- (W)
zé’léa)ckward: o ﬁe
Q@ ()
9.Dis
handled

2. forward:
(B,C)

4. backward:

(C.A)

6. backward:

(C.F)

8. backward:

(D.B)

Cr—)
a%
O—()

OO =20 Cr—)
@% @‘Q: ’ @‘Q'
OO 6@ -



Pseudocode:

1 DEPTH-FIRST-SEARCH(s, G)

2 executes a depth first search on graph G starting from

3 source node s

4

5 forEach node x in &

6 x.color white , z.m =NIL

7 end

8

9 > initialize a stack in S

10 PUSH(S ,s)

11 while S is not empty

12 x = POP(S)

13

14 J# If x is white, then it has not vet been discovered ./

15 if x.color == white then

16 /* x is discovered. Put x back into the stack and
investigate nodes adjacent to x.%/

17 z.color = gray, PUSH(S,z)

18

19 forEach node y in z Adj

20 if y.color == white then

21 PUSH(S,y), ym==

22 else if y.color== gray then

23 > a cycle that includes edge (z.y) exists

24 end

25 end

26 end

27 else

28 x.color = black

29 end

30 end




Remarks

1. Choose any node x from the stack S. The path from s to x can always be found from nodes
lower down in the stack S.

2. All gray nodes in the stack S form a linear path starting from s out to the gray node of the
greatest 'depth'.

3. The parent of a node may be set several times at line 21. The final time when it is set
corresponds to two possible situations:

- When moving forward: X is colored gray at one iteration of the while-loop and y is colored gray
on the following iteration.

- When moving backwards: we POP a white node x at line 12 that is adjacent to the deepest gray
node z currently on the stack.

4. In each iteration of the while loop
- Either x is white and it is colored gray, or x is gray and it is colored black

- A node will be added to the stack as a gray node only once.
- A black node is never added to the stack.

Example

Execute DEPTH-FIRST-SEARCH with s =D



O black node

while-loop iteration O gray node
item 0 1 5 3 4
S D B,F.D C,B,F,D AF.CBF.D AF,CBFD
X D B C A
A.m NIL NIL NIL C c
B NIL D D D b
o NIL NIL B B B
Do NIL NIL il NIL NIL
E o NIL D D c C
e NIL NIL NILl NIL NIL
A.color white white white white gray
B.color white white gray gray gray
C.color white white white gray gray
D.color white gray gray gray gray
F.color white white white white white
H.color white white white white white
cycle
edge (A,D),
(A,B)




O black node

while-loop iteration O gray node
S AF,.C,B,F,.D F.C,B,F,.D F.C,B,F,.D C,B,F.D
A A F
X F
A C C C .
D D D
B.w D
B B B
Cr B
NIL NIL NIL
D.m NIL
C C C
F. C
NIL NIL NIL
H.n NIL
A.color gray black black black
B.color gray gray gray grely
C.color gray gray gray graly
D.color gray gray gray gray
F.color white white gray black
H.color white white white |
white
cycle
edge (AD), (F.B)

(A,B)



Final results:

X A B C D F H
X C D B NIL C NIL
x.color black black black black black white

edges causing cycles: (A,D), (A,B), (F,B)

4. Results and interpretation

Q: How do we know what nodes are reachable from s?

A: If X is reachable from s then x.color is black.

Q: How can we produce the DF-tree?

A: The DF-tree can be made using the parent attributes x.x of the nodes.

DF-tree:

(®) ©)

()



Q: How do we know that the edges found at line 23 produce cycles?

A: This is a consequence of the observation that the gray nodes in the stack form a linear path

from s.
\edge to gray node

O—(0O—0O—> --- —0
—— )

gray nodes in S

Why is this not possible for gray e— — ... —0O)
nodes in S?

Q: What do we obtain if we remove all the cycle edges found in line 23 from the original
graph?

A: We obtain an acyclic graph.

edges causing cycles: (A,D), (A,B), (F,B) @ @ e
(®) 3 (D



Q: Can we use Depth-first-search on an undirected graph?
A: Yes.

Remarks for undirected graph:
- if x belongs to y.Adj, then y belongs to x.Ad]

- if x is reachable from s, then s is reachable from x

- all edges in graph are either tree edges or edges that cause (undirected) cycles



Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo



