
Depth first search

1. Background
2. Data structures
3. Procedure
4. Results and interpretation

1. Background

At start: we have a digraph G = (V,E) and a starting node (source node) s from the digraph.

Goal: we want to know all nodes that are reachable from s.

One way to do this is by performing a graph search.

If all other nodes are reachable, then the search is also a traversal.

Reminders

Example

Results from Depth-first-search (DFS):

2. Data structures

In DFS a node can be in one of 4 states:
(i) undetected, (ii) detected and undiscovered, (iii) discovered or (iv) discovered and
handled.

Q: What do we mean when we say a node x has been discovered?

A: We mean that a path from s to x has been found.

some cycles:

x

adjacent to x

reachable from x

Q: What do we mean when we say a node x has been detected and undiscovered?

A: We mean that x is adjacent to a node that has been discovered, but that x has not yet been
discovered.

Q: What do we mean when we say a node x has been discovered and handled?

A: We mean that x has been discovered and all nodes adjacent to x have been discovered.

In DFS

 - start with all nodes undetected and undiscovered, except s

- progress is made by moving along edges and discovering nodes that have been undetected
and/or undiscovered

- the status of a node is monitored using a stack and colors
If x is undetected, then it is white and it is not on the stack.

If x is detected but undiscovered, then it is white and it is on the stack.
If x is discovered, then it is gray and it is on the stack.
If x is discovered and handled, then it is black and it is not on the stack.

Note: progression of a node:
(white, not on stack) (white, on stack) (gray, on stack) (black, not on stack)

To perform DFS, for each node we have the following attributes:

A stack is a one-dimensional data structure that has top.

A stack S has two basic operations;

PUSH(S,x): places (pushes) item x onto top of stack

POP(S): removes and returns item from top of stack

In DFS we maintain a stack of gray and white nodes.

A stack is said to function on a last-in-first-out (LIFO) basis.

Example

top

operation stack

Start with empty stack: S:

PUSH(S, 7)

PUSH(S, 2)

POP(S)

PUSH(S, 4)

top

top

top

top

3. Procedure

Description of DFS:

When we perform step 3, we are moving forward.

When we perform step 5, we are moving backward (or backtracking).

Example:

starting node: s = D

x xx discovered (gray) x discovered and handled (black)

3. forward:
(C,A)

1. forward:
(D,B)

2. forward:
(B,C)

4. backward:
(C,A)

5. forward:
(C,F)

6. backward:
(C,F)

7. backward:
(B,C)

8. backward:
(D,B)

9. D is
 handled

Pseudocode:

Remarks

1. Choose any node x from the stack S. The path from s to x can always be found from nodes
lower down in the stack S.

2. All gray nodes in the stack S form a linear path starting from s out to the gray node of the
greatest 'depth'.

3. The parent of a node may be set several times at line 21. The final time when it is set
corresponds to two possible situations:

- When moving forward: x is colored gray at one iteration of the while-loop and y is colored gray
on the following iteration.

- When moving backwards: we POP a white node x at line 12 that is adjacent to the deepest gray
node z currently on the stack.

4. In each iteration of the while loop
 - Either x is white and it is colored gray, or x is gray and it is colored black
 - A node will be added to the stack as a gray node only once.
 - A black node is never added to the stack.

Example

Execute DEPTH-FIRST-SEARCH with s = D

while-loop iteration

item

A.

B.

C.

D.

F.

H.

A.color

B.color

C.color

D.color

F.color

H.color

0

S

1

NIL

NIL

NIL

NIL

NIL

NIL

white

white

white

white

white

white

x

cycle
edge

D B,F,D

D

NIL

D

NIL

NIL

D

NIL

white

white

white

gray

white

white

B

C,B,F,D

white

gray

white

gray

white

white

NIL

D

B

NIL

D

NIL

2 3

A,F,C,B,F,D

C

C

D

B

NIL

C

NIL

white

gray

gray

gray

white

white

4

A,F,C,B,F,D

black node

gray node

A

C

D

B

NIL

C

NIL

gray

gray

gray

gray

white

white

(A,D),
(A,B)

while-loop iteration

item

A.

B.

C.

D.

F.

H.

A.color

B.color

C.color

D.color

F.color

H.color

S

x

cycle
edge

4

A,F,C,B,F,D

black node

gray node

A

C

D

B

NIL

C

NIL

gray

gray

gray

gray

white

white

(A,D),
(A,B)

5

F,C,B,F,D

A

C

D

B

NIL

C

NIL

black

gray

gray

gray

white

white

6

F,C,B,F,D

F

C

D

B

NIL

C

NIL

black

gray

gray

gray

gray

white

(F,B)

7

C,B,F,D

F

C

D

B

NIL

C

NIL

black

gray

gray

gray

black

white

4. Results and interpretation

Final results:

x A B C D F H

x.

x.color

C D B NIL C NIL

black black black black black white

edges causing cycles: (A,D), (A,B), (F,B)

Q: How do we know what nodes are reachable from s?

A: If x is reachable from s then x.color is black.

Q: How can we produce the DF-tree?

A: The DF-tree can be made using the parent attributes x. of the nodes.

DF-tree:

Q: How do we know that the edges found at line 23 produce cycles?

A: This is a consequence of the observation that the gray nodes in the stack form a linear path
from s.

s

gray nodes in S

edge to gray node

Q: What do we obtain if we remove all the cycle edges found in line 23 from the original
graph?

A: We obtain an acyclic graph.

edges causing cycles: (A,D), (A,B), (F,B)

sWhy is this not possible for gray
nodes in S?

Q: Can we use Depth-first-search on an undirected graph?

A: Yes.

Remarks for undirected graph:
 - if x belongs to y.Adj, then y belongs to x.Adj

 - if x is reachable from s, then s is reachable from x

- all edges in graph are either tree edges or edges that cause (undirected) cycles

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

