Dijkstra's algorithm and the shortest path problem

- 1. Background
 - 2. Data structures
- 3. Procedures
- 4. Priority queue issues

1. Background

At start: a weighted digraph G = (V, E) and a starting node (source node) s from the digraph

Goal: find shortest path from s to all nodes that are reachable from s

• Weight of edge (x, y) is w((x, y)).

• Weight w((x,y)) is interpreted as a distance.

• All weights are assumed to be non-negative.

• This problem is sometimes called the single-source shortest path problem.

Example

Paths from *F* to *H* and their total lengths

р	ath		<f< th=""><th>, D, H:</th><th>></th><th><f, a,<="" th=""><th>B, H></th><th> <<i>F</i>,</th><th>, A, C</th><th>, D, F</th><th>1></th><th></th><th></th><th></th></f,></th></f<>	, D, H:	>	<f, a,<="" th=""><th>B, H></th><th> <<i>F</i>,</th><th>, A, C</th><th>, D, F</th><th>1></th><th></th><th></th><th></th></f,>	B, H>	 < <i>F</i> ,	, A, C	, D, F	1 >			
to	otal le	ength		17		14			1	3]	

				51					5							
						201404744										
	Let	the s	short	test I	ength	ı patł	1 fron	n s to	x b	e give	en by					
							<	$\langle s, v_1,$	v_2 , .	$\ldots x \rangle$						
	Wł fro	nen v _i m <i>s</i> t	is in v_i .	n thi	s patl	h, the	en the	e subj	path	$\langle s, v_1$	$, v_2,$	v	$_{i}\rangle$ is t	he sh	nortes	t path
	(5)		→(V_)-		>(v.	. .	¢ ,		×	i)	* • •		->	X	
	\smile															
Dyn	amic p	orogra	ımmiı	ng is	not 'p	rogra	mmir	ng' in s	some	comp	outer	langu	age: (C++,	Java,	etc.
Dyn	amic p	orogra	ımmir	ng is	an al	gorith	m de	sign t	echni	que.						
Dijk	stra's a	algorit	hm:													
• SO	lves so	olves	single	e sou	irce s	horte	st pat	h prol	blem	using	the c	dynan	nic pro	gram	nming	
• fol	lows B	FS wi	ith ac	ditio	n of p	riority	que	ue to	take i	into a	ccour	nt wei	ghts o	f edg	es	
• pro	oduces	shor	test p	oath t	tree											
	1															

2. Data	a struc	tures													
Fo perfo	orm Dijks	stra's a	lgorith	nm, fc	or ead	ch no	de we	use	the fo	llowin	g attrib	utes:			
• x	. <mark>d</mark> length	ı of sho	rtest j	path a	r fron	n sou	rce <i>s</i> t	to nod	le x (t	hus fa	r)				
• x	.colour =	= color	of no	de											
• x	$\pi = par$	ent of 1	node a	c in sl	ortes	st pat	h tree								
• x	. <i>Adj</i> set	contair	ning n	odes t	hat a	ire ad	ljacent	to x							
Signifi	cance o	fcolors													
	lour = wh	nite: no). Inde x	not vi	ot dis	cove	red								
• X.CO	our = ar	av: no		liscov	ered	but	shorte	est na	th no	t vet fo	ound				
• X.CO	our = bla	ack: no	ode x	disco	vere	d and	Ishort	test pa	ath fro	omsh	as bee	en foun	d		
For ea	ich edge	Dijksti	a nee	eds w	eight	w((x	, <i>y</i>)).								
Dijkstra	a's algori	thm ma	aintair	ns a p	riorit	y que	eue Q	conta	aining	pairs	(x, <i>x.d</i>) for gra	ay nod	es.	
In Dijks	stra: nod	e <i>x</i> pric	rity =	x.d.											
Two ba	isic oper	ations:													
• 1	NSERT(Q, x, x	<i>r.d</i>): i	insert	s pai	r(x.a)	(l,x) in	nto Q	 -						
• E	XTRAC	CT-MI	N(Q):	extra	acts j	pair ([x.d, x]) hav	ing sr	nalles	priori	ty			

Q Q (6.q)	
Q (6.q)	
(6.9)	
(6,a), (8,b)	
(5,b),(6,a), (8,b)	
detecting when a shorter path has been	
using edge (x, y) , length $y.d$	
th found via edge (x,y) . */	
or d	(6, a) (8, b) $(5, b), (6, a) (8, b)$ $(6, a) (8, b)$ $(6,$

itom			while-loo	p iteration			
	0	1	2	3	4	O	gray node
Q	(0,F)	(2,A),	(4,0)	(5,0)	(c,c)		
		(4D)	(5,C)	(c,c)	(7 _, B)		
		(c,'c)	(c,c)	(10,B)	(10,B)		
			(10,B)	(11, н)	(10,H)		
					(11,H)		
		F	Δ	D	С		
X		• •		2			8
A.d	00	ス	え	æ	d	5	A
B.d	00	æ	10	10	7	2	
C.d	~~	G	5	5	5	F	
D.d	co	<u></u>	4	4	ų		
F.d	σ	0	C	0	C		•
H.d	ø	<i>~</i>	ø	11	1 0		
Α.π	NIL	F	F	F	F		·
Β.π	NIL	NIL	A	A	С		
С.π	NIL	F	Α	A	A		
D .π	NIL	F	F	F	F		
F .π	NIL	NIL	NIL	NIL	NIL		
Η.π	NIL	NIL	NIL	D	С		

			while-loop iteration	black node
item	4	6	8	O gray node
Q	(c,c) (7,B)	(10,B) (10,H)	(11, H)	
	(10,B) (10,H) (11,H)	(†1,H)		
x	С	B	H	B B 4
A.d	2	2	a	2 7 3 2 5
B.d	7	7	7	F 6 C 3 1
C.d	5	5	5	
D.d	ц	Ч	ү	
F.d	C	C	0	
H.d	10	10	10	
Α.π	F	F	F	
Β.π	С	C	C	
С.π	A	A	A	
D.π	F	F	F	
F .π	NIL	NIL	NIL	
Η.π	С	C	C	

Final res	ults:							
x	A	В	С	D	F	Н		
x.d	2	7	5	4	0	10		
Χ.π	F	C	Α	F	NII	C		
				• 				
Shortes	st path tree		- }	A) 3 2/	(B) 5	~		
				C		н)		
			(F)					
				4				
4. Prio	rity queu	e issues						
A heap	can be use	ed as a prio	rity queue.					
 heed n heap d times 	NOT allo oes allow (efficient cha	anging of p	riorities: he	nce same i	node may ap	pear severa	31
• EXTRA	ACT-MIN w	rill always re	emove eler	nent with s	mallest pric	ority		
• in C++	STL max-l	neap is std:	:priority_qu	ieue< >				
• in C++	STL with < std	<length, noo<br="">::priority_qu</length,>	de> pair: Jeue< std::	pair <int, no<="" td=""><td>ode*> ></td><td></td><td></td><td></td></int,>	ode*> >			
• to use	max-heap	as min-hea	p multiply p	oriority by -	1			

Alterr	native	to he	eap fo	or pric	rity q	ueue	: bala	nced	binar	y sea	rch tr	ee.					
• in C	++ S	TL ba	lance	ed bin	ary s	erach	tree	is std	∷set<	>							
• usin	ng witl	h <ler< th=""><th>ngth,</th><th>node</th><th>> pair</th><th>: sto</th><th>d∷set</th><th>< std:</th><th>:pair<</th><th><int, n<="" th=""><th>lode*</th><th>>></th><th></th><th></th><th></th><th></th><th></th></int,></th></ler<>	ngth,	node	> pair	: sto	d∷set	< std:	:pair<	<int, n<="" th=""><th>lode*</th><th>>></th><th></th><th></th><th></th><th></th><th></th></int,>	lode*	>>					
• to cl	hange	e prio	rity: r	emov	e old	<lenç< th=""><th>gth, n</th><th>ode></th><th>pair a</th><th>and in</th><th>sert r</th><th>new <</th><th>lengtl</th><th>n, noc</th><th>le> p</th><th>air</th><th></th></lenç<>	gth, n	ode>	pair a	and in	sert r	new <	lengtl	n, noc	le> p	air	

