
Dijkstra's algorithm and the shortest path problem

1. Background
2. Data structures
3. Procedures
4. Priority queue issues

1. Background

At start: a weighted digraph G = (V,E) and a starting node (source node) s from the digraph

Goal: find shortest path from s to all nodes that are reachable from s

Weight of edge (x,y) is w((x,y)).

Weight w((x,y)) is interpreted as a distance.

All weights are assumed to be non-negative.

This problem is sometimes called the single-source shortest path problem.

Example

Paths from F to H and their total lengths

path <F, D, H> <F, A, B, H> <F, A, C, D, H>

total length

Dynamic programming principle used in solving shortest path problem:

Dynamic programming is not 'programming' in some computer language: C++, Java, etc.

Dynamic programming is an algorithm design technique.

Dijkstra's algorithm:

solves solves single source shortest path problem using the dynamic programming

follows BFS with addition of priority queue to take into account weights of edges

produces shortest path tree

To perform Dijkstra's algorithm, for each node we use the following attributes:

Significance of colors:

x.colour = white: node x not yet discovered

x.colour = gray: node x discovered, but shortest path not yet found

x.colour = black: node x discovered and shortest path from s has been found


2. Data structures

For each edge Dijkstra needs weight w((x,y)).

Dijkstra's algorithm maintains a priority queue Q containing pairs (x, x.d) for gray nodes.

In Dijkstra: node x priority = x.d.

Two basic operations:

Example

operation Q

Start with empty priority queue: Q:

INSERT(Q, a, 6)

INSERT(Q, b, 8)

INSERT(Q, b, 5)

EXTRACT-MIN(Q)

3. Procedures

Dijkstra's algorithm uses procedure RELAX for detecting when a shorter path has been
found.

Remarks

1. The pseudocode is very similar to BREADTH-FIRST-SEARCH. The main difference is that
a priority queue is used in place of an ordinary queue.

2. Lines 23-26 are needed for updating Q when a shorter path is found.

3. Because of line 25 the same node may have several elements in Q.

Example

Execute DIJKSTRA with s = F.

while-loop iteration
item

A.d

B.d

C.d

D.d

F.d

H.d

A.

B.

C.

D.

F.

H.

0

Q

1

NIL

NIL

NIL

NIL

NIL

NIL

2 3 4

black node

gray node

x

F

NIL

F

F

NIL

NIL

F

A

A

F

NIL

NIL

F

A

A

F

NIL

D

F

C

A

F

NIL

C

while-loop iteration

item

A.d

B.d

C.d

D.d

F.d

H.d

A.

B.

C.

D.

F.

H.

Q

4

black node

gray node

x

F

C

A

F

NIL

C

6

F

C

A

F

NIL

C

8

F

C

A

F

NIL

C

Final results:

x A B C D F H

x.d

x.

2 7 5 4 0 10

F C A F NIL C

Shortest path tree

4. Priority queue issues

A heap can be used as a priority queue.

need min-heap

heap does allow efficient changing of priorities: hence same node may appear several
times

EXTRACT-MIN will always remove element with smallest priority

in C++ STL max-heap is std::priority_queue< >

in C++ STL with <length, node> pair:
 std::priority_queue< std::pair<int, Node*> >

to use max-heap as min-heap multiply priority by -1

frank
StrikeOut

frank
Text Box
NOT allow

Alternative to heap for priority queue: balanced binary search tree.

in C++ STL balanced binary serach tree is std::set< >

using with <length, node> pair: std::set< std::pair<int, Node*> >

to change priority: remove old <length, node> pair and insert new <length, node> pair

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

