Dijkstra's algorithm and the shortest path problem

1. Background

2. Data structures

3. Procedures

4. Priority queue issues

1. Background

At start: a weighted digraph G = (V,E) and a starting node (source node) s from the digraph

Goal: find shortest path from s to all nodes that are reachable from s

e Weight of edge (x,y) is w((x,y)).
e Weight w((x,y)) is interpreted as a distance.
¢ All weights are assumed to be non-negative.

¢ This problem is sometimes called the single-source shortest path problem.

Example

Paths from F to H and their total lengths

path l <F, D, H> <F, A, B, H> <F, A, C, D, H>

total length ‘ 11 14 13

Dynamic programming principle used in solving shortest path problem:

Let the shortest length path from s to = be given by

)

(B 01,02, o

When v; is in this path, then the subpath (s, v;,vs, ... v;) is the shortest path

from s to v;.

Dynamic programming is not 'programming’ in some computer language: C++, Java, etc.

Dynamic programming is an algorithm design technique.

Dijkstra's algorithm:

e solves solves single source shortest path problem using the dynamic programming
« follows BFS with addition of priority queue to take into account weights of edges

¢ produces shortest path tree

2. Data structures

To perform Dijkstra's algorithm, for each node we use the following attributes:
e z.d length of shortest path x from source s to node o (thus far)
e z.colour = color of node
e z.m = parent of node x in shortest path tree

e 1. Ad) set containing nodes that are adjacent to x

Significance of colors:
¢ X.colour = white: node x not yet discovered
e x.colour = gray: node x discovered, but shortest path not yet found

¢ X.colour = black: node x discovered and shortest path from s has been found

For each edge Dijkstra needs weight w((x,y)).

Dijkstra's algorithm maintains a priority queue Q containing pairs (x, x.d) for gray nodes.

In Dijkstra: node x priority = x.d.

Two basic operations:

e INSERT(Q, x, x.d): inserts pair (x.d,x) into Q.

o EXTRACT-MIN(Q): extracts pair (x.d, x) having smallest priority

Example

Start with empty priority queue: Q:

operation Q
INSERT(Q, a, 6) (6.a)
INSERT(Q, b, 8) (c,2), (8,b)
] J
INSERT(Q, b, 5) (5,9, {6,a), (8, b)

EXTRACT-MIN(Q)

(6,a), (8,0)

3. Procedures

Dijkstra's algorithm uses procedure RELAX for detecting when a shorter path has been
found.

1 RELAX(z, y)

2 When shorter path to y is found using edge (r,y), length y.d
3 and parent y.m are reset.

4

5 if yd=zrd+w((xr y)) then

G /#* Shorter path than current path found via edge (z.y). */
7 yd=zd+w((z,y)), yor==x

end

@0

e
— D D 00 =] O T OO bD e

pu—
Bz

=t ek
[S

15
16
17
18

20

29

1S

H,.s S\r\wl‘{r?
A

Currt.nl' S‘\Or{'bx)’ P(ﬂ"s

DIIKSTRA(s, &)

starting

from source node s finds the shortest

other nodes of weighted graph G

forEach

r.oolor -

end

f# Give
scolor —

node = in G
white, r.d =00, z.m=NIL

source node appropriate values. #*/
gray , sd=10

> initialize a priority queue ¢
INSERT (@ ,5,0)

while ()

is not empty

T = EXTRACT-MIN(Q)

forEach node y in r.Adj
y.old=y.d, RELAX(z, y)

if y.color == white then
'#+ Node y is undiscovered. =/
y.color = gray, ym=z
INSERT(Q .y .y.d)
else
if y.d<yold and y.color # black then
/# Take into account that y.old <y.d.
INSERT(Q .y .y.d)
end
end
end
x.color black

end

path to

all

Remarks

1. The pseudocode is very similar to BREADTH-FIRST-SEARCH. The main difference is that
a priority queue is used in place of an ordinary queue.

2. Lines 23-26 are needed for updating Q when a shorter path is found.

3. Because of line 25 the same node may have several elements in Q.

Example

Execute DIJKSTRA with s = F.

while-loop iteration O black node

item 0 1) 3 4 O gray node
Q (0,F) (a,p) (vo) (5,00 (0
(vo) (5,00 (&0 (3B
e,y (6,00 (io,B) (5 8)
(v,8) (11H) (10,M)
(11 H)
X - F A D C
Ad o0 2 2 d 2
B.d pe) oo 10 10 7
Cc.d o [5 5
D.d P 4 4 u 4
F.d ®) 0O 0 0 o
H.d F o) ob R 11 10
A.m NIL = E F e
C.n NIL F A A A
D.n NIL F = = e
F.r NIL NIL NIL NIL NIL

H.x NIL NIL NIL D d

while-loop iteration O black node

item 4 6 8 O gray node
Q oSl (w8 (1 m
(+ B) (10,) ’
(10,8) (11 H)
(10 H)
(11 H)
X C B H
Ad 3 2 d
B.d 7 + *
c.d 5 5 5
D.d 4 n 4
F.d g g a
H.d 10 10 10
Am i - F
B.1 - a C
C.n A N A
D.x . . F
F.n NIL NIL NIL
H.x c C ¢

Final results:

X A B C D F H
w.d 2 7 5 4 0 10
X. T

F C A F NIL C

Shortest path tree

4. Priority queue issues

A heap can be used as a priority queue.

e need min-heap

NOT allow
¢ heap does allew efficient changing of priorities: hence same node may appear several

times
o EXTRACT-MIN will always remove element with smallest priority
e in C++ STL max-heap is std::priority_queue< >

e in C++ STL with <length, node> pair:
std::priority_queue< std::pair<int, Node*> >

¢ to use max-heap as min-heap multiply priority by -1

frank
StrikeOut

frank
Text Box
NOT allow

Alternative to heap for priority queue: balanced binary search tree.

¢ in C++ STL balanced binary serach tree is std::set< >
e using with <length, node> pair: std::set< std::pair<int, Node*> >

¢ to change priority: remove old <length, node> pair and insert new <length, node> pair

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

