
Dijkstra's algorithm and the shortest path problem

1. Background
2. Data structures
3. Procedures
4. Priority queue issues

1. Background

At start: a weighted digraph G = (V,E) and a starting node (source node) s from the digraph

Goal: find shortest path from s to all nodes that are reachable from s

Weight of edge (x,y) is w((x,y)).

Weight w((x,y)) is interpreted as a distance.

All weights are assumed to be non-negative.

This problem is sometimes called the single-source shortest path problem.

Example

Paths from F to H and their total lengths

path <F, D, H> <F, A, B, H> <F, A, C, D, H>

total length

Dynamic programming principle used in solving shortest path problem:

Dynamic programming is not 'programming' in some computer language: C++, Java, etc.

Dynamic programming is an algorithm design technique.

Dijkstra's algorithm:

solves solves single source shortest path problem using the dynamic programming

follows BFS with addition of priority queue to take into account weights of edges

produces shortest path tree

To perform Dijkstra's algorithm, for each node we use the following attributes:

Significance of colors:

x.colour = white: node x not yet discovered

x.colour = gray: node x discovered, but shortest path not yet found

x.colour = black: node x discovered and shortest path from s has been found

2. Data structures

For each edge Dijkstra needs weight w((x,y)).

Dijkstra's algorithm maintains a priority queue Q containing pairs (x, x.d) for gray nodes.

In Dijkstra: node x priority = x.d.

Two basic operations:

Example

operation Q

Start with empty priority queue: Q:

INSERT(Q, a, 6)

INSERT(Q, b, 8)

INSERT(Q, b, 5)

EXTRACT-MIN(Q)

3. Procedures

Dijkstra's algorithm uses procedure RELAX for detecting when a shorter path has been
found.

Remarks

1. The pseudocode is very similar to BREADTH-FIRST-SEARCH. The main difference is that
a priority queue is used in place of an ordinary queue.

2. Lines 23-26 are needed for updating Q when a shorter path is found.

3. Because of line 25 the same node may have several elements in Q.

Example

Execute DIJKSTRA with s = F.

while-loop iteration
item

A.d

B.d

C.d

D.d

F.d

H.d

A.

B.

C.

D.

F.

H.

0

Q

1

NIL

NIL

NIL

NIL

NIL

NIL

2 3 4

black node

gray node

x

F

NIL

F

F

NIL

NIL

F

A

A

F

NIL

NIL

F

A

A

F

NIL

D

F

C

A

F

NIL

C

while-loop iteration

item

A.d

B.d

C.d

D.d

F.d

H.d

A.

B.

C.

D.

F.

H.

Q

4

black node

gray node

x

F

C

A

F

NIL

C

6

F

C

A

F

NIL

C

8

F

C

A

F

NIL

C

Final results:

x A B C D F H

x.d

x.

2 7 5 4 0 10

F C A F NIL C

Shortest path tree

4. Priority queue issues

A heap can be used as a priority queue.

need min-heap

heap does allow efficient changing of priorities: hence same node may appear several
times

EXTRACT-MIN will always remove element with smallest priority

in C++ STL max-heap is std::priority_queue< >

in C++ STL with <length, node> pair:
 std::priority_queue< std::pair<int, Node*> >

to use max-heap as min-heap multiply priority by -1

frank
StrikeOut

frank
Text Box
NOT allow

Alternative to heap for priority queue: balanced binary search tree.

in C++ STL balanced binary serach tree is std::set< >

using with <length, node> pair: std::set< std::pair<int, Node*> >

to change priority: remove old <length, node> pair and insert new <length, node> pair

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

