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1. Graphs

A directed graph or digraph G is usually presented as a pair (V, £):

V is the vertex set and F is the edge set.

The elements of V' are called vertices.

An element of E is called an edge and it is an ordered pair (a, b) of vertices.
For an ordered pair (a,b) # (b, a).
Synonyms:

e vertex = node

e edge = arc = link
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If the graph edges have no direction, they we have an undirected graph.

For an undirected graph (a,b) = (b, a).

NOTE: multiple edges not allowed
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Terminology
e If edge (a.b) exists in a digraph, then b is adjacent to a.

o If edge (a,b) exists in an undirected graph, then b is adjacent to @ and a is adjacent
to b.

o If edge (a,b) exists in a digraph, then a is starting vertex and b is the final vertex.

e In an undirected graph the degree a € V' is the number of vertices that are adjacent

to a.
e An isolated vertex in an undirected graph is one whose degree is 0.

e In a digraph, the out-degree of a € V is the number of edges leaving from a and the

in-degree of @ € V' is the number of edges entering a.
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The graph has no isolated vertices. ]

More terminology

e A path of length k from vertex ag to vertex a; is an ordered sequence of vertices

{ap, ay,as, ... a) such that each edge (a;,a,:1),1=0,1, ..

e In a simple path no vertex is repeated.

e If there is a path from a to b, then b is reachable from a.

. k — 1 exists in the graph.

e An undirected graph is connected if every vertex is reachable from every other vertex.

e A digraph is strongly connected if every vertex is reachable from every other vertex.

e The path (ag,a,as, ... a;) is a cycle when ag = ay.

e In a simple cycle (ap,a1,as, ... ax) the only repeated vertex is ap.

e An acyclic graph has no cycles.
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2. Trees

Undirected trees

Each of the following defines an undirected tree G = (V, E):

G is connected and acylic.

(- is connected and the number of edges is one less than the number of vertices.

There is a unique simple path connecting every two vertices in G.

(7 is acyclic, but adding any edge to E results in a graph with one cycle.
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Rooted trees

A rooted tree is a digraph (V, E') where there is a unique simple path from one particular

vertex, the root or r, to any other vertex, but there is no path from any vertex to r.
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Terminology
e If a is a vertex on the unique path from r to b, then a is an ancestor of b.
e If a is an ancestor of b, then b is a descendant of a.

e The subtree rooted at a is a rooted tree having a as it’s root and includes all descendants

of a.
e If (a,b) is an edge, then a is b’s parent and b is a’ child.
e Two vertices having the same parent are siblings.
e A vertex with no children is a leaf or an external vertex.
e A non-leaf vertex is an internal vertex.
e The depth of vertex a is the length of the simple path from r to a.

e The tree’s height is largest depth of any vertex.
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3. Binary trees

A binary tree is a rooted tree where every vertex has at most two children.

Terminology

e The binary tree with no vertices is the empty tree or the null tree.

e Each child of a vertex is either the left child or the right child.

e When a vertex has no left (right) child, then the left (right) child is missing.

e If b is the left (right) child of a, then the left subtree (right subtree) of a is the subtree
rooted at b.
NOTE: both left and right subtrees are also binary trees

e In a full binary tree each vertex has either two children or no children.

A complete binary tree is a full binary tree where all leaves are at the same depth.
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