Graphs, trees and binary trees

- 1. Graphs
- 2. Trees
- 3. Binary trees

1. Graphs

A directed graph or digraph G is usually presented as a pair (V, E): V is the vertex set and E is the edge set.

The elements of V are called vertices.

An element of E is called an edge and it is an ordered pair (a, b) of vertices.

For an ordered pair $(a, b) \neq (b, a)$.

Synonyms:

- vertex = node
- edge = arc = link

Example

If the graph edges have no direction, they we have an undirected graph. For an undirected graph (a, b) = (b, a).

NOTE: multiple edges not allowed

Example

Terminology

- If edge (a, b) exists in a digraph, then b is adjacent to a.
- If edge (a, b) exists in an undirected graph, then b is adjacent to a and a is adjacent to b.
- If edge (a, b) exists in a digraph, then a is starting vertex and b is the final vertex.
- In an undirected graph the degree $a \in V$ is the number of vertices that are adjacent to a.
- An isolated vertex in an undirected graph is one whose degree is 0.
- In a digraph, the out-degree of $a \in V$ is the number of edges leaving from a and the in-degree of $a \in V$ is the number of edges entering a.

vertex x	vertices adjacent to x		vertice <i>x</i> is ad	s to which jacent	in-degree	degree out-degree		
Q	~		Сје		2	0		
Ь	d		C		1	1		
С	b,d,e,a		d		1	4		
d	c		b,c		え	1		
e	e,a,f		C I	2	ک	3		
f	_		e		7		0	
Example	đ	(b) (1)) -(f)				
vertex x		G	b	С	d	e	F	
vertices adjacent to x		c,e	dc	a,e,b,d	p`c	c,a,f	e	
degree		2	2	4	2	3	1	

The graph has no isolated vertices.

More terminology

• A path of length k from vertex a_0 to vertex a_k is an ordered sequence of vertices $\langle a_0, a_1, a_2, \ldots, a_k \rangle$ such that each edge $(a_i, a_{i+1}), i = 0, 1, \ldots, k-1$ exists in the graph.

П

- In a simple path no vertex is repeated.
- If there is a path from a to b, then b is reachable from a.
- An undirected graph is connected if every vertex is reachable from every other vertex.
- A digraph is strongly connected if every vertex is reachable from every other vertex.
- The path $\langle a_0, a_1, a_2, \ldots, a_k \rangle$ is a cycle when $a_0 = a_k$.
- In a simple cycle $\langle a_0, a_1, a_2, \ldots, a_k \rangle$ the only repeated vertex is a_0 .
- An acyclic graph has no cycles.

Example

(i) Paths from b to a $\langle b, c, a \rangle$ length = 2 $\langle b, d, c, e, a \rangle$ length = 4 $\langle b, d, c, b, d, c, a \rangle$ length = 6

- (ii) Simple paths from b to a <b, c, a> and <b, d, c, e, a>
- (iii) Every vertex is reachable from every other vertex. Hence the graph is connected.

G₁ is not acyclic.

G₂ is acyclic.

2. Trees

Undirected trees

Each of the following defines an undirected tree G = (V, E):

- G is connected and acylic.
- G is connected and the number of edges is one less than the number of vertices.
- There is a unique simple path connecting every two vertices in G.
- G is acyclic, but adding any edge to E results in a graph with one cycle.

Example

no path from d to e, so not a tree

is a tree

Π

Rooted trees

A rooted tree is a digraph (V, E) where there is a unique simple path from one particular vertex, the root or r, to any other vertex, but there is no path from any vertex to r.

no vertex has a path to all other vertices, so not a rooted tree

two paths from *d* to *a*, so not a rooted tree

is a rooted tree; root is d

NOTE: usually omit arrows when drawing rooted tree and root is at the top

Terminology

- If a is a vertex on the unique path from r to b, then a is an ancestor of b.
- If a is an ancestor of b, then b is a descendant of a.
- The subtree rooted at *a* is a rooted tree having *a* as it's root and includes all descendants of *a*.
- If (a, b) is an edge, then a is b's parent and b is a' child.
- Two vertices having the same parent are siblings.
- A vertex with no children is a leaf or an external vertex.
- A non-leaf vertex is an internal vertex.
- The depth of vertex a is the length of the simple path from r to a.
- The tree's height is largest depth of any vertex.

Example depth 0 OR depth 1 b depth 2 depth 3 (i) path from d to F: <d, c, e, f> From this path we observe - c is an ancestor of f - F is a descendant of c (ii) From edge (c,e) c is e's parent and e is cs' child ilii) Vertices e and a are siblings. Vertices band a are not siblings. (iv) Vertices b, F and a are leaves. Vertices d, e and c are internal vertices.

(v) The trees height is 3.

(vi) The subtree rooted at c is e a

3. Binary trees

A binary tree is a rooted tree where every vertex has at most two children.

Terminology

- The binary tree with no vertices is the empty tree or the null tree.
- Each child of a vertex is either the left child or the right child.
- When a vertex has no left (right) child, then the left (right) child is missing.
- If b is the left (right) child of a, then the left subtree (right subtree) of a is the subtree rooted at b.
 NOTE: both left and right subtrees are also binary trees
- In a full binary tree each vertex has either two children or no children.
- A complete binary tree is a full binary tree where all leaves are at the same depth.

Example

b has only one child, so not a full binary tree

is a full binary tree, but not complete since leaves b and e are not at same depth

is a complete binary tree

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

made by Frank Cameron

