Hash tables

1. Background and terminology

2. Resolving collisions

3. Hash function

4. Rehashing

5. Runtime efficiency and amortized analysis

1. Background and terminology

At start: we have many pairs: (ky,7ry), (ka,73), (k3. 73). ... (kn.Th)

In each pair: k; is unique key and r; is a record

Goal: maintain all records in some data structure that allows efficient insert. delete, and

search operations

Example

A database of cars

ki = license plate

ri = (car make, car model, motor tvpe, color, etc..) |:|

Consider vector (or array): ALl | A2] | Af3] . Alm|

Given index i, we can very quickly
e find the contents of Afi] (search)
e overwrite the contents of Afi] with NIL (delete)

e put a record into A[i] (insert)

A hash table tries to mimic the efficiency of an array, but only for insert, delete, and

search operations.

A hash table is of little use when something having to do with order is needed:
e find the largest or smallest key
e given a key k;. find the next largest or the next smallest key

e given a key k;, find if there are any keys larger than k;

Terminology
e kev: a unique key associated with a record
e record: all the data we want to store about one item
e hash table: an array of buckets
e bucket (or slot): one location in the hash table

e hash function (or hash map): a function that computes a location (the bucket) in the

hash table given a key

e collision: when two or more records are assigned to the same bucket

n = number of records stored

m = number of buckets

Example
hash

table bucket
0

1
2
3
4
3
6

hash
table bucket
0
1
If two (or more) keys get mapped 2
to same bucket ... Collision! 3
4
5
6

In C++ STL unordered_set and unordered _map are hash tables.

From https://en.cppreference.com/w/cpp/container/unordered_map

std:unordered_map

Defined in header <unordered_map=

template<
class Key,
class T, (since
class Hash = std::hash<Keys, (1) Casll)
class KeyEqual = std::equal_to<Key=,
class Allocator = std::allocator< std::pair<const Key, T= >
> class unordered_map;
namespace pmr {
template =class Key,
class T,
class Hash = std::hash<Key>, 2) (since
class Pred = std::equal_to<Key>> C++17)

using unordered_map = std::unordered_map<Key, T, Hash, Pred,
std::pmr::polymorphic_allocator<std: :pair<const Key, T=>>;

}

Unordered map is an associative container that contains key-value pairs with unique keys. Search, insertion, and
removal of elements have average constant-time complexity.

Internally, the elements are not sorted in any particular order, but organized into buckets. Which bucket an element is
placed into depends entirely on the hash of its key. Keys with the same hash code appear in the same bucket. This
allows fast access to individual elements, since once the hash is computed, it refers to the exact bucket the element is
placed into.

Modifiers

clears the contents

{public member function)

inserts elements or nodes (since C++17)

(public member function)

inserts an element or assigns to the current element if the key already exists
{public member function)

constructs element in-place

(public member function)

constructs elements in-place using a hint

(public member function)

inserts in-place if the key does not exist, does nothing if the key exists
(public member function)

erases elements

(public member function)

swaps the contents

{public member function)

extracts nodes from the container

{public member function)

splices nodes from another container

{public member function)

clear(C++11)

insert (C++11)

insert or assign(C++17)
emplace (C++11)

emplace hint(c++11)

try emplace(C++17)
erase (C++11)

swap (C++11)

extract (C++17)

merge (C++17)

Lookup

access specified element with bounds checking

{public member function)

access or insert specified element

{public member function)

returns the number of elements matching specific key
{public member function)

finds element with specific key

{public member function)

checks if the container contains element with specific key
(public member function)

returns range of elements matching a specific key
(public member function)

at (C++11)
operator[] (C++11)
count (C++11)

find (C++11)
contains (C++20)

equal_range (C++11)

2. Resolving collisions

Two strategies:
e open hashing or chaining

e closed hashing

Open hashing

Buckets contain pointers to start of linked list.

insert : The hash function gives the correct bucket. The (key, record)-pair is stored at start

of linked list.

search : The hash function gives the correct bucket, if the record exists. We must search
through the linked list to find the key,

delete : The hash function gives the correct bucket, if the record exists. We must search

through the linked list to find the key and then delete the (key, record)-pair.

keys and hash
records table
—»NIL

—-'-I H[r_%]—-l HI J=4I—-'}.’IL
: NI

—+=NIL
—=NIL

—=NIL

—-l;ci[rﬁl—-lkzlrll—-m

From https://en.cppreference.com/w/cpp/container/unordered_map

Bucket interface

beginisize type)

. C++11
Chegll’lfsize_'type]l(++11)

eﬂd(size_typel

C++11
Cend{size_type} [)

bucket_count (C++11)
max_bucket_count (C++11)
bucket size(C++11)

bucket (C++11)

Closed hashing

returns an iterator to the beginning of the specified bucket
(public member function)

returns an iterator to the end of the specified bucket
(public member function)

returns the number of buckets

(public member function)

returns the maximum number of buckets

(public member function)

returns the number of elements in specific bucket
(public member function)

returns the bucket for specific key
{public member function)

All data is stored in the buckets.

When collisions oceur (or have occured), the bucket from the hash function may not be

the bucket that meets our requirements. A special probing function is used to provide us

with a sequence of buckets that we should check.

insert : The hash function gives the a bucket. If the bucket is not occupied, then store
the (key, record)-pair in it. If the bucket is occupied, use probing function to find an

unoccupied bucket.

search : The hash function gives a bucket. If the bucket contains the key, then we have

found the (key, record)-pair. If the bucket does not contain the key, then we must use

the probing function until we have checked all occupied buckets.

delete : The hash function gives a bucket. If the bucket contains the key, then we have
found the (key, record)-pair. If the bucket does not contain the key, then we must use

the probing function until we have checked all occupied buckets,

keys and hash

keys and hash
! records table
records table
k2|2
k1,1l
e [
73 -
e i 113
B 8 P
function
[kere]
5,15 |
k5|rs
N order of insertion:
order of insertion: S 439]
1.2.3.4.5 W
3. Hash functions
Properties of a good hash function h(k):
o uniform distribution of keys amongst all buckets (minimize collisions)
e quick to compute (O(1) in practice)
o deterministic: for a given key k always produces same bucket
e should use all information of key
Example: key is birthdate
Bad choices: dd.mm, dd.mm.yy Better choice: dd.mm.yyyy
e should be able to avoid assigning kevs with regularities to same bucket(s)
Example: key is integer with digits zyzs ... 2, 455¢ ; 4¢39

regularity: z; < x4,

Example

Assume key k is integer and m is number of buckets.

Simple hash function: hik) = mod(k, m) hod(a?‘ 5)= 2

When might this h(k) be bad?

e suppose m even and all keys are even
consequence: hall of buckets are alwavs empty

e suppose m = 10" and key is integer with s = r digits
Mz 10660
k= apl0® + 10" + ... + @ 10° k = Te48?
consequence: data a,, a,., ... o, 18 not used

Sensible policy: use existing (default) hash functions and focus on providing good

keys.

Hash functions and STL:

¢ declaring

1 std::unordered_map<std::string, myData> myMap;

simply nses STL’s default hash function when key is string

¢ if key is number (short, int, long, double etc.) or pointer or string, best to use STL’s

own default hash and focus on forming keys
e unordered_map will allow user to input own hash function

e if key is struct, it might be possible to use some attribute as key

] struct Car

2 {

3 int yearMade;

4 std::string licensePlate; // Best possible key.
5 std::string color;

6 std::string MotorType;

7 &

STL will not accept a struct as a key. In such cases it may be necessary to form a hash function.

Two examples of forming a hash function from a struct.

Example |

1 struct Key {

2 std::string first;

3 std::string second;

1}

5!

fi struct KeyHash {

T std::size_t operator() (const Key& k) const

8 {

g return std::hash<std::string>() (k.first) - N

10 (std::hash<std::string>() (k.second) << 1); XOK

11 }

12 };

13

14 struct KeyEqual {

15 bool operator() (const Keyk lhs, const Keyk& rhs) const

16 {

T return lhs.first == rhs.first && lhs.second == rhs.second;

18 }

19}

20

21 int main()

22 {

23 // Define the KeyHash and KeyEqual structs and use them in the template
24 std::unordered_map<Key, std::string, KeyHash, KeyEgqual> newMap = {
25 { {"John", "Doe"}, "example"}, { {"Mary", "Sue"}, "another"} };
26

27}

Example Il

1 // Type for a coordinate {(x, y)

2 struct Coord

34

4 int x = NO_VALUE;

5 int y = NO_VALUE;

6

K

8 // Example: Defining == and hash function for Coord so that it can be used
9 // as key for std::unordered_map/set, if needed

10 inline bool operator==(Coord cl, Coord c2) {return cl.x == c2.x &k cl.y == c2.vy; }
11 inline bool operator!=(Coord cl, Coord c2) {return !{cl==c2); } // Not strictly

necessary

12

13 struct CoordHash

14 {

15 std::size_t operator()(Coord xy) const

16 {

17 auto hasher = std::hash<int>();

13 auto xhash = hasher(xy.x);

19 auto yhash = hasher(xy.y);
20) // Combine hash values (magic!)
21 return xhash =~ (yhash + 0x9e3779b8 + (xhash << 6) + (xhash >> 2));
22 }
23 ¥;

O

If your key is really composed of two or more attributes (elements), then search (Google)
for help to obtain hash function.

4. Rehashing

Q: What is a hash table’s load factor o?

A: The load factor is the average number of records per bucket or o = n/m.

Q: What is a done in rehashing?

A: There are two parts:
e an acceptable limit ayy, is set for the load factor
e if o > oy, then a new hash table is created with m,., > m buckets

e all records from old hash table are rehashed and restored in new hash table

Decisions:
e value for ay;,,?

e value for my,,?

The value for oy, is a compromise:

o large agim: fewer buckets and hence memory needed, but more records per bucket and

hence longer average search and delete times

o small oy, more buckets and hence memory needed, but fewer records per bucket and
hence shorter average search and delete times

Choosing value for ratio my.,/m is a compromise:
e smaller Myew/m: more frequent rehashes, less memory used when rehashing

o larger mpew/m: less frequent rehashes, more memory used when rehashing

STL's unordered_set and unordered_map have automatic rehashing using default values

of g, and myey.

However, user can set these.

From https://en.cppreference.com/w/cpp/container/unordered_map

Hash policy

returns average number of elements per bucket

{public member function)

manages maximum average number of elements per bucket

(public member function)

reserves at least the specified number of buckets and regenerates the hash table
(public member function)

reserves space for at least the specified number of elements and regenerates the hash

reserve (C++11) table
(public member function)

load factor(C++11)
max_load factor(C++11)

rehash (C++11)

5. Runtime efficiency and amortized analysis

Assumptions
e use chaining (open hashing) for collisions.

e hash function computation is O(1)

Worst case

All n records are in the same bucket.

keys and hash

records table

—+ NIL

—-+1 3| 13— bet] b= k1| 1 {5 S {22 |—NIL
—=NIL

—=NIL

_L.NIL

—+NIL
—=NIL

Operation efficiencies:

search O(n) delete O(n) insert (J(n)

Q Why is insert O(n)?

A Have to check that record with same keyv does not already exist.

Best case

All buckets have (almost) same number of records: [n/m].

keys and hash

records table

A

—+ k3| r3—=NIL
il

—t> k6| 76— 8| r8| —NIL
-

—HR2|r2|—NIL

el

Operation efficiencies:
search 6(n/m) delete B(n/m) insert O(n/m)
If number of buckets is proportional to number of records: m = fAn for some constant 3

search ©(1/3) = 6(1) delete O(1/3) = 6(1) insert ©(1/73) = ©(1)

Note: 3 =1/a.

Two requirements to obtain runtime efficiencies that are constant time:

e m is proportional to n

e good hash function! (does not have to be perfect)

Q: What to do when n grows?
A: Rehash.

Q: Do we lose the 6(1) efficiency from rehashing?

A: Not if we consider amortized analysis.

Q: What is amortized analysis?
A Instead of just considering the runtime efficiency for an individual procedure or operation,

we consider the average runtime efficiency for a sequence of operations.

Example

Assumptions:

e perform a sequence of insert operations and rehash operations
e insert is (1)
e rehash done when load factor is a >=1

o when hash table has n records, rehash is just a sequence of n inserts, hence ©(n)

Operation sequence:

stage 1 Set hash table size to mp = 1. Do one insert. Set ¢ = 1.
stage 2 Set new hash table size to m; = 2m;_,. Perform a rehash.
stage 3 Do m; — m;_, insert operations. Set : =+ 1.

stage 4 If i = r, then stop. If ¢ < r, then repeat stages 2 and 3.

it | mi_y m; stage 2 operations counts stage 3 operations counts
1 1 2 1 1

2 2 -4 2 2

3 4 8 .. 4

r gr—1 ar ar—1 ar—1

Total number of elements in hash table:

n = stage 1 insert + sum of stage 3 inserts

=1 4L142 444 4T

Total operations count:

T = stage 1 count + sum of stage 2 counts + sum of stage 3 counts

o E GREs o B B s |
Amortized efficiency per operation:

B ey

Critical part: in stage 2, new hash table size is m; = fm,_; for some f > 1.

[]

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

