| пазн | ables | | | | | | | | |-----------|---------------------------|------------------|------------------|--------------------------|-----------|--------------|-----------|---------| | | | | | | | | | | | | ground and | | gy | | | | | | | | olving collision function | ons | | | | | | | | 4. Reh | | | | | | | | | | | ime efficienc | y and amo | ortized a | analysis | | | | | | | | | | | | | | | | 1. Bacl | ground and | terminolog | ду | | | | | | | | | | | | | | | | | At star | : we have ma | ny pairs: (k | $(1, r_1), (k$ | $(k_3, r_2), (k_3, r_3)$ | r_3), | (k_n, r_n) | | | | In each | pair: k_i is uni | que key and | $d r_i$ is a i | record | | | | | | Goal | naintain all rec | ords in som | e data st | ructure th | at allows | efficient | insert de | lete a | | | operations | ordo in boin | c data bu | ractare en | ar arone | Cincient | msert, de | 1000, 0 | | | | | ı | 1 1 | 1 1 | 1 1 | 1 1 | 1 | | Example | A databa | se of cars | | | | | | | | | l 1 | cense plate | | | | | | | | | | 1-5 | | | | 1 | | | | | $r_i = ($ | car make, car | nodel, mot | or type, | color, etc. | .) | Consider | vector (or arra | y): A[1] |] A[2] | A[3] | | A[m] | E | | | | , | ., | | | Visitorio | | b . | | | Given inc | lex i , we can ver | y quickly | | | | | | | | • fine | the contents of | A[i] (search) |) | | | | | | | • ove | write the conte | ats of $A[i]$ wi | ith NIL (c | lelete) | | | | | | | | | | | | | | | | A 25114 | a record into A | (incort) | | | | | | | | A hash | table | tries | to m | imic | the | efficie | nev o | of an | array | bu: | t only | for | inse | rt | delete | s 5 | |--|--------------------------------|---------------------------|------------------------------|---------------------------------|----------------|--------------|--------|--------|--------|-------|------------|-------|----------------------------|------|----------|------| | | | | (U III | imic | the | Cilicic | ncy c | n an | array | , bu | c Only | 101 | IIISC | , | ucicu | ', ' | | search | operac | ions. | | | | | | | | | 1 | | | | | | | A 11. | 4-11- | · c | 1:441- | | 1 | 0012362-0012 | | 1 | | . 1 | 241 | | 12000 | | 1. 1. | | | A hash | table | IS OI | пше | use | wner | 1 SOIII | etnin | g na | ving t | o do | with | ora | er is | nee | ded: | | | • fi | nd the | large | est or | r sma | allest | key | | | | | | | | | | | | • g | iven a | key k | c_i , fin | d the | e nex | t lar | gest o | or the | e next | sma | llest | key | • g | iven a | key k | i, fin | id if | there | are a | any k | eys 1 | arger | than | κ_i | Townin | logu | | | | | | | | | | | | | | | | | Termino | 7.5 (2)=3 | 34 | 1 | | | 1 | | | | | | | | | | | | • ke | y: a u | nıque | кеу | assoc | ated | with | a rec | cord | | | | | | | | | | • re | cord: a | all the | data | a we | want | to st | ore al | bout | one it | em | • ha | sh tab | le: ar | arra | ay of | buck | ets | | | | | | | | | | | | | ish tab | | | | | | he ha | sh ta | ble | | | | | | | | | • bu | icket (| or slo | t): 01 | ne lo | cation | n in t | | | | npute | s a lo | catio | on (th | e bu | ıcket) i | in | | • bu | icket (| or slo | t): 01
(or l | ne loc | cation | n in t | | | | npute | s a lo | catio | on (th | e bu | ıcket) i | in | | • bu • ha | icket (eash fun
ash tab | or slo
ction
de giv | t): or
(or len a | ne loo
nash
key | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) i | in | | • bu • ha | icket (| or slo
ction
de giv | t): or
(or len a | ne loo
nash
key | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) i | in | | • bu • ha | ash fun
ash tab | or slo | t): or
(or len a | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) i | in | | buhaha | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) i | in : | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in : | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in 1 | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in i | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in 1 | | bu ha co n = num | ash fun
ash tab
dlision: | or slo | t): or
(or len a
n two | ne loo
nash
key
o or r | cation
map) | n in tl | nctio | n tha | it con | | | | 9190 5 3 40 40 9760 | e bu | icket) | in 1 | ``` From https://en.cppreference.com/w/cpp/container/unordered_map std::unordered map Defined in header <unordered_map> template< class Key, class T, (since class Hash = std::hash<Key>, C++11) class KeyEqual = std::equal to<Key>, class Allocator = std::allocator< std::pair<const Key, T> > > class unordered map; namespace pmr { template <class Key, class T, class Hash = std::hash<Key>, (since class Pred = std::equal_to<Key>> C++17) using unordered_map = std::unordered_map<Key, T, Hash, Pred,</pre> std::pmr::polymorphic_allocator<std::pair<const Key,T>>>; } Unordered map is an associative container that contains key-value pairs with unique keys. Search, insertion, and removal of elements have average constant-time complexity. Internally, the elements are not sorted in any particular order, but organized into buckets. Which bucket an element is placed into depends entirely on the hash of its key. Keys with the same hash code appear in the same bucket. This allows fast access to individual elements, since once the hash is computed, it refers to the exact bucket the element is placed into. Modifiers clears the contents clear(C++11) (public member function) inserts elements or nodes (since C++17) insert (C++11) (public member function) inserts an element or assigns to the current element if the key already exists insert_or_assign(C++17) (public member function) constructs element in-place emplace (C++11) (public member function) constructs elements in-place using a hint emplace_hint(C++11) inserts in-place if the key does not exist, does nothing if the key exists try emplace (C++17) (public member function) erases elements erase (C++11) (public member function) swaps the contents swap (C++11) (public member function) extracts nodes from the container extract (C++17) (public member function) splices nodes from another container merge (C++17) (public member function) Lookup access specified element with bounds checking at (C++11) (public member function) access or insert specified element operator[](C++11) (public member function) returns the number of elements matching specific key count (C++11) (public member function) finds element with specific key find (C++11) (public member function) checks if the container contains element with specific key contains (C++20) (public member function) returns range of elements matching a specific key equal range (C++11) ``` | 2. Resolvi | na colli | sions | | | | | | | | | |
--|---|--|--------------------------------------|--|----------------------|------------------|-----------------|-------|------|-------------|------| | Z. INESOIVI | ing com | SIONS | | | | | | | | | | | Two strat | egies: | | | | | | | | | | | | • oper | n hashin | g or chain | ing | | | | | | | | | | • clos | ed hashi | ng | | | | | | | | | | | Open hash | ning | | | | | | | | | | | | Buckets con | tain poi | nters to sta | art of lin | ked list. | | | | | | | | | search : T | | function g | | | ucket, if | the rec | ord ex | ists. | We r | nust | sear | | search : Tothrough | he hash
gh the li
he hash
gh the li | nked list to | o find the
ives the
o find the | e key.
correct bi
e key and | icket, if
then de | the recelete the | ord ex
(key, | ists. | We n | nust
ir. | sear | | search : Tothrough | he hash
gh the li
he hash
gh the li | nked list to
function g
nked list to | ives the find the | e key. correct be e key and sh | icket, if
then de | the recelete the | ord ex
(key, | ists. | We n | nust
ir. | sear | | search : Tothrough | he hash
gh the ling
he hash
gh the ling
and | nked list to
function g
nked list to | ives the find the | e key.
correct but
e key and | icket, if
then de | the recelete the | ord ex
(key, | ists. | We n | nust
ir. | sear | | search : To through through through through the search is through through the search is i | he hash gh the li he hash gh the li s and rds | nked list to | ives the find the | correct be key and sh | icket, if
then de | the recelete the | ord ex
(key, | ists. | We n | nust
ir. | sear | | keys reco k1, r k4, r4 | he hash gh the li he hash gh the li s and rds | nked list to
function g
nked list to | ives the find the | correct by e key and esh ble NIL k3 r3 NIL NIL NIL | then de | the recelete the | ord ex
(key, | ists. | We n | nust
ir. | sear | | search: To through through through through the keys reco | he hash gh the li he hash gh the li s and rds | nked list to function g nked list to | ives the find the | correct by e key and esh ble NIL + k3 r3 + NIL + NIL | then de | the recelete the | ord ex
(key, | ists. | We n | nust
ir. | sear | | Bucket in |
 terfac | e
e | | | | | | | | | | 1 | | 1 | | | |--|--|---|---|--|--
---|--|--|--|--|--|---|---|--|-----------------------------|--| | begin(si
cbegin(s | ze_type) | (C++ | 11) | returns
(public m | | | the b | eginni | ng of tl | he spe | cified b | oucket | | | | | | end(size_
cend(size | | | | returns
(public m | | | the e | nd of t | he spe | cified I | bucket | | | | | | | bucket_ | | | | returns
(public m | the nu | ımber d | of bucl | kets | | | | | | | | | | max_buc | ket_co | unt (C | ++11) | returns
(public m | the m | aximun | n num | ber of | bucket | S | | | | | | | | bucket_ | size(C | ++11) | | returns
(public m | | | of elen | nents i | n speci | ific bud | cket | | | | | | | bucket (| C++11) | | | returns
(public m | | | r spec | ific ke | у | Closed | | partition and | 1 | 1 | 1 | | | 1 | 1 | 1 | 1 | 1 | | | 1 | | | | hash | ing | | | | | | | | | | | | | | | | | | | n the | huckets | e | | | | | | | | | | | | | All data | | | n the | buckets | S. | | | | | | | | | | | | | All data | ı is sto | ored in | | 2216 | | 200.00 TO | | | | | | | | | | | | | ı is sto | ored in | | 2216 | | red), t | he bi | ucket | from | the ha | ash fu | nction | may | not | be | | | All data When o | a is sto | ored in | cur (c | or have | e occu | 10110 - 101 0 15 - 10 | | | | | | | \$ 1000 O.M. | | | | | All data When of the buc | a is sto | ns ocat | cur (c | or have
ur requ | e occu
iireme | nts. A | spec | ial pr | | | | | \$ 1000 O.M. | | | | | All data When o | a is sto | ns ocat | cur (c | or have
ur requ | e occu
iireme | nts. A | spec | ial pr | | | | | \$ 1000 O.M. | | | | | All data When of the buc with a s | a is sto
collision
ket the
sequen | ns oce
at me | cur (cets or | or have
ur requ
ts that | e occu
iireme
we sł | nts. A | spec
check. | ial pr | obing | functi | ion is | used t | o pro | vide | us | | | When of the buc with a sinsert | a is sto
collisio
ket th
sequen
: The | ns occat me | cur (ceets or
bucke | or have
ur requ
ts that
tion giv | e occu
nireme
we sh | nts. A
nould c | specheck. | ial pr | obing
e buck | functi
ket is | ion is | used t | o pro | vide
n sto | us
ore | | | When of the buc with a sinsert | a is sto
collisio
ket th
sequen
: The | ns occat me | cur (cets or
bucke | or have
ur requ
ts that
tion giv | e occu
nireme
we sh | nts. A
nould c | specheck. | ial pr | obing
e buck | functi
ket is | ion is | used t | o pro | vide
n sto | us
ore | | | When of the buc with a sinsert | a is sto
collisio
ket th
sequen
: The | ns occat me ce of hash | cur (cets or
bucke
funct | or have
ur requ
ts that
tion giv
air in i | e occu
nireme
we sh | nts. A
nould c | specheck. | ial pr | obing
e buck | functi
ket is | ion is | used t | o pro | vide
n sto | us
ore | | | When of the buc with a sinsert | collisions to the collisions that collisio | ns occat me ce of hash | cur (cets or
bucke
funct | or have
ur requ
ts that
tion giv
air in i | e occu
nireme
we sh | nts. A
nould c | specheck. | ial pr | obing
e buck | functi
ket is | ion is | used t | o pro | vide
n sto | us
ore | | | When of the buc with a sinsert | collisions to the sequents: The e (key noccup | ns occat me ce of hash , reco | cur (cets or
bucke
funct
rd)-pa
ucket. | or have
ur requ
ts that
tion give
air in it | e occurireme we shows the | nts.
A
nould o
e a bu
he buc | specheck.
cket.
ket is | ial pr | obing
e buck
pied, t | functi
ket is
use pro | not oo | used to | o pro | vide
en sto
find | us
ore
an | | | When of the buc with a sinsert the unserth | collision ket the sequents: The lecture (key noccur | ns occat me ce of hash , reco | cur (cets or
bucke
funct
rd)-pa
ucket. | or have
ur requ
ts that
tion give
air in it | e occurireme we shows the t. If the ves a | nts. Anould on the bucket bucket | specheck.
cket.
ket is | If the occup | obing e buck pied, t | functive function for the function function for the function function for the function functi | not of obing | used to
ccupied
function
key, t | o pro
l, the
on to
hen v | vide
en sto
find a | us
ore
an | | | When of the buc with a sinsert the unsert for | collision ket the sequent is the constant of the constant is the constant of the constant is the constant in the constant is the constant in t | ns occat me ce of hash pied be hash ne (ke | cur (cets or
bucke
funct
rd)-pa
ucket.
r func | or have
ur reque
ts that
tion give
air in it
tion give
ord)-pa | e occurireme we shows the vest the vest a ve | nts. Anould on the bucket the bucket | specheck. cket. ket is | If the occup | e buck
pied, u
acket con | functive function for the function func | not of obing ns the he key | used to | o pro
l, the
on to
hen v | vide
en sto
find a | us
ore
an | | | When of the buc with a sinsert the unsert for | collision ket the sequent is the constant of the constant is the constant of the constant is the constant in the constant is the constant in t | ns occat me ce of hash pied be hash ne (ke | cur (cets or
bucke
funct
rd)-pa
ucket.
r func | or have
ur requ
ts that
tion give
air in it | e occurireme we shows the vest the vest a ve | nts. Anould on the bucket the bucket | specheck. cket. ket is | If the occup | e buck
pied, u
acket con | functive function for the function func | not of obing ns the he key | used to
ccupied
function
key, t | o pro
l, the
on to
hen v | vide
en sto
find a | us
ore
an | | | When of the buc with a sinsert the ur search fo | collision ket the sequent is the constant of t | ns occat me ce of hash ied be hash iee (ke) | cur (cets or
bucke
funct
rd)-pa
ucket.
func
y, reco | or have
ur reque
ts that
tion give
air in it
tion give
ord)-pa | e occurireme we shows the vest the vest a vest a lir. If | nts. Anould on the bucket the bucket ave che | speceheck. cket. ket is tild teket ceket | If the occup | e buck
pied, u
acket con
cupiec | functi ket is use pre contain tain t l buck | not of obing ns the he key sets. | used to
ccupied
function
key, to
then | o pro | vide
en sto
find a
ve ha | ore
an
ve | | | When of the buc with a sinsert the ur search fo the delete | collision ket the sequent is The le (key noccupate und the profession of the collision of the collision of the profession of the collision | ns occat me ce of hash pied by hash hash hash hash | cur (cets or
bucke
funct
rd)-pa
ucket.
func
y, reco | or have
ur requests that
tion givenir in it
tion givenition givenity | e occurireme we shows the ves a wir. If the level a we have a | nts. Anould on the bucket the bucket bucket bucket bucket | speceheck. cket. ket is cket ceket ceket | If the occup the but all occup | e buck
pied, u
cket con
cupied | functi ket is contain tain t buck | not of obing ns the key sets. | used to
ccupied
function
key, to
then | o pro
l, the
on to
hen v
we m | vide
en sto
find a
ve ha
ust u | us
ore
an
ve
se | | | When of the buc with a sinsert the ur search fo the delete | collision ket the sequent is The le (key noccupate und the profession of the collision of the collision of the profession of the collision | ns occat me ce of hash pied by hash hash hash hash | cur (cets or
bucke
funct
rd)-pa
ucket.
func
y, reco | or have
ur requests that
tion givenir in it
tion givenition givenity | e occurireme we shows the ves a wir. If the level a we have a | nts. Anould on the bucket the bucket bucket bucket bucket | speceheck. cket. ket is cket ceket ceket | If the occup the but all oc | e buck
pied, u
cket con
cupied | functi ket is contain tain t buck | not of obing ns the key sets. | used to
ccupied
function
key, to
then | o pro
l, the
on to
hen v
we m | vide
en sto
find a
ve ha
ust u | us
ore
an
ve
se | | | When of the buc with a sinsert the ur search fo the delete for | collision ket the sequent is The le (key moccupate in the le problem probl | ns occat me ce of hash pied be hash hash hash hash hash hash hash has | cur (cets or bucke functed)-paucket. I function function function, reco | or have
ur requests that
tion givenir in it
tion givenition givenity | e occurireme we shows the ves a wir. If the ves a wir. If | nts. Anould on the bucket the bucket bucket the | cket. cket is cket cecked If the | If the occupation of the business occupations occupati | e buck
pied, u
acket of
cupied
cket of
ot con | function function function the function the function the function | not of obing the key sets. In the key he key he key | used to
ccupied
function
key, to
then | o pro
l, the
on to
hen v
we m | vide
en sto
find a
ve ha
ust u | us
ore
an
ve
se | | | Exa | mple | | | | | | | | | | | | | | | | | |------|--------|--------|--------|-------|--------------|-----------------------|----------------|----------------|-------|--------------------|---------------|------|----------------|-------|------------|-------|-----| | Δο | sume | kev | l ie i | nteg | er en | d m | ie nu | ımbei | of h | neke | te | | | | | | | | 710 | sume | Key | n 10 1 | псев | ci an | id m | 15 110 | unoci | OI U | ucke | 05 | | | | | | | | C:. | nnlo | book | f | tion. | 1./1.) | | 1/1 | | | | | | 1/- | | | | | | 511 | nple | nasn | Tune | tion; | $n(\kappa)$ | = n | A)DOI | (c, m) | | | | m | 9 q (3 | 7,5) | ۶ <u>ک</u> | | | | _ w | hen | migh | t this | h(k |) he | had? | | | | | | | | | | | | | ,, | | 15.70 | | 22 2 | | | | | | | | | | | | | | | | | 100100 | | | | | . 1 | are ev | | | i | | | | | | | | | C | onsec | luenc | e: na | ali oi | buck | cets a | are al | ways | emp | ty | | | | | | | | | • St | ippo | se m | = 10 | ane | d key | is ir | ntege | r wit | h s > | $r ext{ di}$ | gits | | | h : | : 10(| 2 A | | | | | | | | | 1 | 1.0 | v0 · | 101 | II. | | 10 | | | | | | | | | | | | | $\kappa =$ | $\alpha_0 10$ | + c | $\chi_1 \perp U^*$ | + . | + | $\alpha_s 10$ | | k = | 764 | 87 | | | | | | | | | | | | | | | | | •• | | | | | C | onsec | iuenc | e: da | ata o | $_{r}$, α_{r} | _11 , . | α _s | is no | t use | ed | | | | • | | | | | c | onsec | luenc | e: da | ata α | $_r, \alpha_r$ | +1, • | α_s | is no | t use | ed | | | | | | | | | C | onsec | luenc | e: da | ata α | $_r$, α_r | +1, · | α _s | is no | t use | ed | | | | | | | | | C | onsec | luenc | e: da | ata α | r , α_r | +1, • | α_s | is no | ot use | ed | | | | | | | | | C | onsec | luenc | e: da | ata α | r, α_r | +1, • | $$ α_s | is no | t use | ed | | | | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | ling g | | | | Sens | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | ible p | | | | | | | | | | | ocus | on p | rovio | | | | | | ible p | | | | | | | | | | | ocus | on p | rovic | | | | | | | | | 0.71 | | | | | | | | | | | | | | |-------|----------------|------------|---------|---------|--|---------|----------|---------|---------|--------|---------|-------------|---------|--------|------------|--------|--------| | Hash | n tunc | ctions | and | SIL: | | | | | | | | | | | | | | | | doole | , with a | | | | | | | | | | | | | | | | | | decla | 9201 | | | | | | | | | | | | | <u>~</u> } | | | | 1 | ا
ـــــــــ | std::u | norder | red_ma | p <std:< td=""><td>::stri</td><td>ng, my</td><td>/Data></td><td>myMap</td><td>);</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></std:<> | ::stri | ng, my | /Data> | myMap |); | | | | | _ | | | | | simr | olv use | s STL | 's defa | ult ha | sh fur | nction | when | kev is | string | ř | 2000 - 2000 | | | -0.000 | | | | | | | | | | 7 2500 | | |) or po | ointer | or stri | ng, be | st to u | se ST1 | L's | | | | | own | derau | it nasn | and 1 | ocus o | on tori | ming k | eys | | | | | | | | | | | | unor | dered | l_map | will al | low us | er to | input (| own ha | ash fur | nction | | | | | | | | | | if ke | y is st | ruct, | it mig | ght be | possil | ole to 1 | ise soi | ne att | ribute | as ke | y | | | | | | | 1 | 1 . | struct | Car | E 337 | | 17.0 | | | | | | 2 | | | | | | | | 2 - | { | oar | | | | | | | | | | | | _ | | | | 3 | 3 | int | yearMa | ide; | | | | | | | | | | | | | | | 4 | 4 | | | 1000 | | ate; | // Bes | t pos | sible | key. | | | | | | | | | 35 | 5 | | :strin | | | | | | | | | | | | | | | | | 3
7 | std:
}; | :strin | ig Mot | orType | ; | | | | | | | | | | | | | 8 | _ | , | | | | | | | | | | | | | - |
 | | | | | | STL w | vill no | t acce | ept a | struct | as a | key. | In su | ch ca | ses it | may | be ne | ecess | ary to | form | a has | sh fur | oction | Two e | examp | oles c | f form | ning a | hash | func | tion fi | om a | struc | t. | 1 | | | | | | | | | | | | | | | | | | ``` Example I struct Key { 2 std::string first; 3 std::string second; 4 }; 5 6 struct KeyHash { 7 std::size_t operator()(const Key& k) const 8 9 return std::hash<std::string>()(k.first) ^ \wedge 10 (std::hash<std::string>()(k.second) << 1); XOR } 11 12 }; 13 14 struct KeyEqual { bool operator()(const Key& lhs, const Key& rhs) const 15 16 17 return lhs.first == rhs.first && lhs.second == rhs.second; } 18 19 }; 20 21 int main() 22 23 // Define the KeyHash and KeyEqual structs and use them in the template std::unordered_map<Key, std::string, KeyHash, KeyEqual> newMap = { 24 25 { {"John", "Doe"}, "example"}, { {"Mary", "Sue"}, "another"} }; 26 27 } ``` | | Example | e II | | | | | | | | | | | | | | |-------|-----------|--|--|---------|------------------------|---------|---------|-------|--------|-------|--------|--------|--------|-------|------------| // | | | | | | | | | | | | | | | | | // Type | | oordinat | te (x, | У | | | | | | | | | | | | | { | | | | | | | | | | | | | | | | 4 | int | x = NO_V | /ALUE; | | | | | | | | | | | | | | 5 | int | y = NO_V | /ALUE; | | | | | | | | | | | | | | 6 | }; | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | | | 0.00 | // Examp | | The state of s | | | | | | so tha | t it | can be | e used | | | | | 1,000 | // as ke | The second second second | | | DESCRIPTION OF SERVICE | | | | | | | | | | | | | inline h | _ | | | | | | | | | | | | | | | - 11 | inline h | and the same of th | rator!= | (Coord | c1, Coo | ord c2) | {retu | ırn ! | (c1==c | 2); } | // No | ot str | ictly | | | | 12 | | ssary | | | | | | | | | | | | | | | 0.000 | struct (| 'oordHag | h | | | | | | | | | | | | | | 14 | | Joorunas | 11 | | | | | | | | | | | | | | 15 | | :size_t | operato | r()(Coc | ord xv) | const | | | | | | | | | | | 16 | | .0120_0 | oporado | () (00 | , L u, , | | | | | | | | | _ | | | 17 | | auto has | her = s | td::has | h <int></int> | (); | | | | | | | | | | | 18 | <u></u> | auto xha | sh = has | sher(xy | .x); | | | | | | | | | | | | 19 | - | auto yha | sh = has | sher(xy | .y); | | | | | | | | | | | | 20 | | // Combi | ne hash | values | (magi | c!) | | | | | | | | | | | 21 | | return x | hash ^ | (yhash | + 0x9e | 3779ъ9 | + (xha | ash < | < 6) + | (xha | sh >> | 2)); | | | | | 22 | 33 | | | | | | | | | | | | | | | | 23 | }; | П | If vo | ur key is | really | compo | sed of | two | r mor | e attri | ihute | s (el | emen | te) t | hen s | earch | ı (Go | oald | | | elp to o | | | | | | o atti | ibato | 0 (01 | | ιο,, τ | | ou. o. | . (00 | ~ <u>9</u> | | | • | Rehas | hing | | | | | | | | | | | | | |------------|------------------------|---------------------------|----------|------------------------|---|---------------|--------------------|------------|-----------|---------|--------------|---------|--------|----| | Q: | What | is a ha | ash tab | le's loa | nd facto | or α ? | | | | | | | | | | A : | The lo | ad fac | tor is t | he ave | rage nu | ımber | of reco | rds per | buck | et or o | $\alpha = r$ | n/m. | | | | Q: | What | is a d | one in | rehashi | ing? | | | | | | | | | | | 100 | | | vo part | | 1670 | | | | | | | | _ | | | | | -2008 A. L. C. 190 | 1.1 1. | m • (0 esweed a | 5.0000000000000000000000000000000000000 | e (1 | 1 1 | e . | | | | | | | | | • an | accept | able lin | art α_{lin} | ı is set | for th | e load | tactor | | | | | | | | | • if a | $\alpha > \alpha_{lin}$ | n, then | a new | hash t | able is | create | d with | m_{new} | > m 1 | oucke | ts | | | | - | - 11 | 1 | c | 111 | 1 / 11 | | 1 1 | 1 1 | 7 | 1 . | 1 | 1 1 | | | | | • an | record | s irom | oid nas | sn table | e are r | enasneo | l and r | estore | 1 in ne | ew na | asn ta | oie | | | Dec | cisions: | | | | | | | | | | | | | | | 1000100 | | | | | | | | | | | | | | | | 1 | valu | e for α | lim? | | | | | | | | | | | | | | • valu | e for n | lnow? | | | | | | | | | | | | | | | | new. | | | | | | | | | | | | | TI | ne valu | e for α | lim is a | compr | omise: | | - | | | | | | | | | + | | | cent. | | | | | | | | | | | | | | 6.00 0000 | Cathalian State of the La | | | | | See the second see | needed | , but r | nore r | ecord | s per l | oucket | an | | | hen | ice long | ger avei | age se | arch a | nd del | ete tim | ies | | | | | | | | | • sma | all α _{lim} | : more | bucket | s and h | ence n | nemorv | needed | , but f | ewer r | ecord | s per l | oucket | ar | | | | | rter ave | | | | same of | | , | | | 1 | | | | | 5303,074.0 | | 70 70 00 | | | | 03-9/00/53/00/53 | C C 234-94 | - Ch | oosir | or vol | luo fo | r rot | io m | 10 | n ic | a com | Drom |
ico. | | | | | | | | |--------------------------|-----------------|------------|------------------|--|--------|--|---|-----------------------------------|------------------------------|-------------------|----------------|---------|----------------|----------|---------|-------|-----| | CII | 100511 | ig vai | iue io | ı ıaı | 10 111 | new/ | 11 15 | a com | ргоп | nse. | | | | | | | | | | • sn | naller | m _{net} | w/m: | mo | re fre | quen | t reha | ashes. | , less | men | nory | used | whe | n rel | ashi | ng | | | • la | rger i | m_{new} | /m: | less f | freque | ent re | ehash | es, m | ore i | neme | ory u | sed v | vhen | reha | shing | g | | | | 553 | 20 | | | 50 | | | | | | 52 | STL | 's unc | order | ed se | et and | d unc | order | ed ma | ap hav | re aut | omat | ic rel | ashir | 19° 11Si | ng de | efault | valu | es | | | | $d m_{ne}$ | | | | | - u | -р | | | | | .0 | | | , ara | | | | CHIL COLL | - ···· | w. | Howe | ever, i | ıser c | an se | t the | se. | onco | COM | /u/cr | on/co | nta. | inor | /1120 | rdor | od m | an | | | | | | | | | | ence | .com | /w/cp | op/co | onta: | iner | /uno: | rder | ed_m | ap | | | | Fron | | ps:/ | | cppr | efer | | | | 19509 | | | /uno: | rder | ed_m | ар | | | | Fron
Hash | n htt
policy | ps:/ | /en. | cppro | efer | erage r | number | of elen | nents p | er buc | ket | | | ed_m | ар | | | | Fron
Hash
load | n htt
policy | ps:/ | /en. | retu
(publ
man | efer | erage r
ber funct
maximu
ber funct | number
ion)
um ave
ion) | r of elem | nents p | er buc | ket
ients p | er bucl | cet | | | | | | Fron Hash load max | n htt
policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct | number
ion)
im ave
ion)
the spe | r of elem
rage nu
ecified n | nents p
ımber o
number | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | | | Fron Hash load max_ reha | n htt policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem | nents p
ımber o
number | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | nsh | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o
number | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | ish | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o
number | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | ısh | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o
number | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | ash | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o
number | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | nsh | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | nsh | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | ish | | Fron Hash load max_ reha | policy | ps:/ | /en. | retu
(publ
man
(publ
rese
(publ | efer | erage r
ber funct
maximu
ber funct
t least
ber funct
pace fo | number
ion)
um ave
ion)
the spe
ion)
r at lea | r of elem
rage nu
ecified n | nents p
ımber o | er buc
of elem | ket
nents p | er buck | cet
enerate | es the I | hash ta | | nsh | | 100 | | g (open h | ashing) | zed analysi | | | | | |-------|--------------------------------------|-----------|---------|---------------|-----------|-----------|----------|---------| | Worst | | 0.00 | | | | | | | | _ | keys and | i | | hash
table | | | | | | | k1, r1
k2, r2
k3, r3
k4, r4 | has | h | | 3 → k4 r4 | → k1 r1 - | →[k5]r5] | k2 r2 — | | Two | o requ | ireme | ents t | o ob | tain 1 | runtii | me ef | ficien | cies t | hat a | are co | onsta | nt ti | me: | | | | |------------|-------------------------------------|---------------------------|------------|--------------------------|-------------------|----------------------|---------|---------|----------------------|--------|--------|-------|----------------------|-------|------|-------|---------| | | • <i>m</i> i | s pro | porti | onal | to n | | | | | | | | | | | | | | - | • god | od ha | ash f | unct | ion! | (doe | s not | have | to b | e per | fect) | | | | | | | | | | | | 2000 mg p 16 m Coll 70 1 | 200, 780 5 0-0. 0 | | | | 1 - 2000 0 500 2 400 | | | | | | | | | | 0. | Wha | t to c | lo wl | on n | gros | we? | | | | | | | | | | | | | | Reha | | 10 W1 | icii n | gro | ws. | | | | | | | | | | | | | 54 2 | 7000 | 250 | 039 | £36399 | 204 0 | | 33 | 33 | 200 8 | | | | | | | | | | | Do w | | | 17.4 | | | | | shing | ? | | | | | | | | | A : | Not i | we c | consic | ier ai | norti | zed a | nalys | sis. | , 34 . | What | | | | | | W/S | m | | | | | | | e | | 5/45 | | A : | Instea | d of J | ust co | onside | | | | ne effi | cienc | y for | | | W. 72 P. S. C. C. C. | | dure | or op | eration | | THO | concid | lor th | 0 0770 | POGO | minti | maa | Hiciar | our fo | n o c. | omon | no of | OTOM | entin | CT CT | | | | | we | consid | ler th | e ave | rage | runti | me e | fficier | icy fo | r a se | equen | ce of | ope | ratio | ns. | | | | | | | | e ave | rage | runti | me e | fficier | icy fo | r a se | equen | ce of | ope | ratio | ns. | | | | | | consid | | e ave | rage | runti | me e | fficier | ncy fo | r a se | equen | ce of | oper | ratio | ns. | | | | | Exa | | | e ave | rage | runti | me e | fficier | icy fo | r a se | equen | ce of | ope | ratio | ns. | | | | | Exa | ample
sumpt | ions: | | **** | | | | 17 | | | | | ratio | ns. | | | | | Exa
Ass | ample
sumpti
perfor | ons:
m a se | equeno | **** | | | | 17 | | | | | ratio | ns. | | | | | Exa
Ass | ample
sumpt | ons:
m a se | equeno | **** | | | | 17 | | | | | ratio | ns. | | | | | Ass | ample
sumpti
perfor | ons:
m a se
t is Θ(| equeno(1) | ce of i | nsert | opera | ations | and r | | | | | ratio | ns. | | | | | Ass | ample
sumpti
perfor
insert | ons:
m a se
t is Θ(| equence(1) | ce of i | nsert
l facto | operator is α | ations | and r | ehasł | ı oper | ations | 8 | | | (n) | | | | Ass | ample
sumpti
perfor | ons:
m a se
t is Θ(| equence(1) | ce of i | nsert
l facto | operator is α | ations | and r | ehasł | ı oper | ations | 8 | | | (n) | | | | Ass | ample
sumpti
perfor
insert | ons:
m a se
t is Θ(| equence(1) | ce of i | nsert
l facto | operator is α | ations | and r | ehasł | ı oper | ations | 8 | | | (n) | | | | Ass | ample
sumpti
perfor
insert | ons:
m a se
t is Θ(| equence(1) | ce of i | nsert
l facto | operator is α | ations | and r | ehasł | ı oper | ations | 8 | | | (n) | | | | Ass | ample
sumpti
perfor
insert | ons:
m a se
t is Θ(| equence(1) | ce of i | nsert
l facto | operator is α | ations | and r | ehasł | ı oper | ations | 8 | | | (n) | | | | Operation sequence | e: | | | |--|-------------------------------|--|--| | stage 1 Set has | n table size to $m_0 = 1$. I | Do one insert . Set $i = 1$. | | | stage 2 Set new | hash table size to $m_i =$ | $2m_{i-1}$. Perform a rehash . | | | stage 3 Do m_i | $-m_{i-1}$ insert operations | s. Set $i = i + 1$. | | | | | n repeat stages 2 and 3. | | | stage 4 II t = t. | then stop. If $i < r$, then | ii repeat stages 2 and 5. | | | $i \mid m_{i-1} \mid m_i$ | stage 2 operations count | ts stage 3 operations counts | | | $-\begin{array}{c
ccccccccccccccccccccccccccccccccccc$ | 1 | 1 | | | - 2 2 4 | 2 | 2 | | | - 3 4 8 | 4 | 4 | | | - : : | | | | | | 5032 x 011 | where • | | | $r \mid 2^{r-1} \mid 2^r$ | 2^{r-1} | 2^{r-1} | | | | | | | | Total number of el | ements in hash table: | | | | | | | | | | n = stage 1 insert + st | 90 D) 900 P | | | | = 1 + 1 + 2 + 4 + . | $\ldots + 2^{r-1} = 2^r$ | Total operatio | ns count: | | | | |-----------------|---------------------------------------|----------------------------|-------------------------------|-------| | T - | stage 1 count | cum of stage 2 coun | ts + sum of stage 3 cou | nte | | | $1 + 2^r - 1 + 2^r - 1$ | | ts + sum of stage 5 cou | III.S | | | | | | | | Amortized ef | ficiency per operation | on: | | | | | Barrestonium and attachman in the | | | | | | $\frac{T}{n} = \frac{2^{r+1}-1}{2^r}$ | $\leq 2 = O(1)$ | | | | | | | | | | — Critical part | : in stage 2, new ha | sh table size is $m_i = 1$ | fm_{i-1} for some $f > 1$. | Tämä teos on lis | ensoitu Creati | ive Commo | ns Nimeä-E | iKaupallineı | ղ- | | | |-----------------------------------|------------------|------------|-------------------|--------------|------------|---|--| | EiMuutoksia 4.0 | | | | le lisenssiä | osoitteess | a | | | http://creativecor | HITIOHS.OLG/IICE | enses/by-n | <u>5-110/4.0/</u> | | | | | | tekijä: Frank Car | meron | This work is lice | | | | | | | | | NonCommercial this license, visit | | | | | | | | | | | | | | | | | | made by Frank (| Cameron | 80 | | | | | | | | (cc)(1) | \$= | | | | | | | | © BY | S = | | | | | | | | (C) (B) | S = | | | | | | | | (C) (B) (B) | NC ND | | | | | | | | (C) (BY | NC ND | | | | | | | | © (1)
BY | NC ND | | | | | | | | © BY | NC ND | | | | | | | | © BY | S = | | | | | | | | © BY | S = | | | | | | | | GO BY | S = NC ND | | | | | | | | ВУ | S = NC ND | | | | | | | | BY | S = NC ND | | | | | | | | ВУ | S = NC ND | | | | | | | | ВУ | S = NC ND | | | | | | | | ВУ | S = NC ND | | | | | | | | BY | S E NC ND | | | | | | | | BY | S = NC ND | | | | | | |