Implementing a heap using an array

1. Storing a heap binary tree as an array
2. Heap algorithms using array storage
3. Heap sort

1. Storing a heap binary tree as an array

A heap is a binary tree with certain properties.

Assumption: each vertex (node) in the binary tree has a value (a key) associated with it

To be a heap a binary tree must have the following properties:
property 1: the parent's key is at least as large as the keys of its children
property 2: all depths, except possibly the largest, have the maximum number of nodes

property 3: at the largest depth, any missing nodes (leaves) are at the right end

From binary tree to array

®)
O s —> OO

We have lost the pointers
to children and parents!

Q: When a binary tree is stored as an array, how can we find the children and/or parent of a
given node i?

A: We store the nodes in a particular order and use the array indices (locations).

Array indices and locations in binary tree.

InCPQWS:hj
corresponding array

0 (7) 1]2 [3]a]5]6]7[8]9]10]u]2]13]14]15]

Example
heap as binary tree corresponding array
(1)
(7) () "Ml +19]|5 G| 8
® © &]

For node whose index is X in array:

LEFT(X) = 2x, RIGHT(X)=2x+1, PARENT(X) =|x/2]

Assumption: heap array is A

NOTES

1. key of root is always A[1]
2. A.heapsize is number of elements in heap
3. A.length must be at least A.heapsize

4. assume functions LEFT, RIGHT and PARENT are available

Example

Consider swapping key of nodel with its parent key. Assume A[x] corresponds to nodel.

Using pointers Using array

1 temp=nodel.key 1 temp=Alz]
2 nodel.key = nodel parent.key 2 Alz]= A[PARENT(z)]
3 nodel.parent.key = temp 3 A[PARENT(z)] =temp

Q: Why store a heap as an array?

A: Itis more efficient both in terms of running time and storage space to store a heap as an
array rather than using a binary tree with pointers.

2. Heap algorithms using array storage

HEAP-INSERT: allows insertion of a new node into an existing heap

1 HEAP-INSERT (heapRoot , node)

2 input a heap whose root node is specified by heapRoot and a
3 new node that should be added to the heap

4

5 if depth height is not yet full of leaves then

6 > insert node as the rightmost leaf at depth height

7 else

8 height = height + 1

9 = insert node as the first (leftmost) leaf at depth height
10 end

11

12 /* After this insertion , node now has a parent. We allow
13 node to percolate up in the heap until it finds its

14 i b Vanatiaw

15 while (node # heapRoot and node.key > node.parent.key)

16 SWAP(node , node.parent)

17 end

1 HEAP-INSERT (A, key)

2 input a heap which is stored as an array A and the key of a
3 new node that should be added to the heap
4 i = Aheapsize + 1

5 Ali] = key

6 A heapsize =i

7 while (i>1 and Ali] > A[PARENT(i)|)

8 temp = Ali]

9 Ali) = A[PARENT(i)]

10 A[PARENT(i)] = temp

11 i=PARENT(i)

12 end

HEAPIFY: for a binary tree (or subtree) for which some node x lacks property 1, restores this
property for all nodes below node x thereby making a heap

1 HEAPIFY (heapRoot , nodel)
2 input a heap whose root node is specified by heapRoot and
3 one particular node (nodel) of the heap
4 /= All nodes in the heap, except for possibly nodel,
5 have the heap properties. We allow nodel to trickle down to
6 its correct location. =/
i
:
9 while (nodel # node2)
10 node2 = nodel
11 L = nodel.left, R = nodel.right
12 if (L exists and L.key > node2.key) then
13 node2 = L
14 end
15 if (R exists and R.key > node2.key) then
16 node2 = R
17 end
18 if (nodel # node2) then
19 SWAP(nodel | node2)
20 end
21 end
1 HEAPIFY (A, i)
2 input a heap which is stored as an array A and a location i
3 whose key may be smaller than its children
4 | i = A.heapsize +1 |
B while (:#7)
6 =
7 T=IEFTT), R=RICHT()
8 if (L < Aheapsize and A[L] > A[j]) then
9 j=1L
10 end
11 if (R < Aheapsize and A[R] > A[j]) then
12 gl
13 end
14 if (i#j) then
15 temp = Ali]
16 Ali] = A[j|
17 Alj] = temp
18 end

19 end

BUILD-HEAP: for a binary tree lacking property 1 at any (and possibly all) nodes, restores this
property thereby making a heap

0 =1 o L o LD D

BUILDHEAP{ heapRoot)

input a binary tree whose root node is specified by heapRoot ,F }
/# The input binary tree may lack property 1 at any or all 52 QOﬂd 9 s
of its nodes. As such all nodes, except for the current \) \ /
leaves . must be checked and if necessary modified so that
the final output is a binary tree which is a heap. #/ pl 3
for i from height —1 to 0 / \ /

forEach internal node at depth ¢ from right to left

HEAPIFY (heapRoot , node) Y4 S G

end

end

secoad §,,. 0}

BUILDHEAP(A) \l l’
input a binary tree which is stored as an array A 1 |3 b 1st6 ""
/= It is assumed that the entire array is used in storing the

binary tree clements. #/

Aheapsize = Alength

for i from |(A.heapsize/2)| to 1
HEAPIFY (A, i)

end

HEAP-EXTRACT-MAX: removes the root from a heap, restores the heap properties and returns
the maximum key

1 HEAP-EXTRACT-MAX(heapRoot)

2 input a heap whose root node is specified by heapRoot

3 [+ The root of the heap is removed and replaced by the

4 rightmost leaf at the lowest depth. After restoring the

5 heap properties, the key of the original root is returned. */

i

7 max = heapRoot key

8 = let node be the rightmost leaf at depth height

9 heapRoot key = node.key)

10 > remove node from the heap |

11 if node was the only node at depth height

12 height = height — 1

13 end

14 HEAPIFY (heapRoot , heapRoot)

15 return maz
1 HEAP-EXTRACTAAX(A)
2 input a hcap which is stored as an array A
3
4 max = All]
5 n = Aheapsize
6 All] = Aln]
T | A.heapsize = n — 1|
8 HEAPIFY (A, 1)
9 return max

3. Heap sort

A heap can be used to produce a sorted array using procedure HEAPSORT.

1 HEAPSORT(A)
2 input an array A which contains numbers that have no
particular order

3 /#* This procedure sorts the numbers in A from smallest to

4 largest. It is assumed that all locations in A arc used. =/
5 BUILDHEAP(A)

6 n = Alength

T for i from n to 2

8 temp = Ali

9 Ali] = A[1]

10 A[l] = temp

11 Aheapsize = Aheapsize — 1

12 HEAPIFY (A, 1)
13 end

Example

Starting array: A [2B &TRT8TILT]3]

stage line computation or new A
1 h |11|8|-1|5 6|2|3|
2 6, 7 =" £

3 8,9,10,11 temp =23, A[7] =11, A[l] =3, A.heapsize =6

i 12 18f6l4]513]2011]

11

2

11

5 7891011 =6, temp =2, A[6] =8, A[l] =2, A heapsize =5

6 12 615141213]8]11]

NOTES
1. Heapsort needs no extra storage space.

2. Heapsort's runtime efficiency is the same as Mergesort's runtime efficiency.

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

0o

