The he	an dat	a etru	oturo											
	ap uat	a 511 U	clure											
1. Heap	backgro	ound												
2. Heap	algorith	ms												
3. Runti	me effic	iencies												
1. Heap b	ackgrou	Ind												
A heap is a	ı binary tre	e with c	ertain pro	operti	es.									
Assumptior	ו: each ve	rtex (no	de) in the	binar	ry tree	has	a val	ue (a	key)	asso	ciated	with	it	
To be a h	eap a bina	ary tree r	nust have	e the f	followi	ing p	roper	ties:						
property	1: the par	ent's kev	/ is at lea:	st as	large	as th	e kev	s of it	s chil	dren				
nroperty	2. all dent	the exce	nt nossih	ly the		et h	avo th		vimu	m nur	nhor (ofnor		
	2. of the k			miaai		doo /					ht one	3	100	
property	3. at the la	argest ut	epin, any	111551	ng no	ues	leave	5) an	e al li	ie ng	ni enc	<u>ر</u>		
Fxample	Is the hir	harv tree	a hean?											
			a noup.											
		(11)		1 1	1				(11)					
•	(8)		0		ŗĴ	•	8		0	\geq	6			
せ 1:	101							N		/				
		3		6	(7		(50	5				
		3		6	(T		6		9)				
τ ₁ : (7) Νο	. Does	3 not	have	6	(Ŋ N₀.	D) Des	n ot	ha	ve			
ν ν ν ν ν ν ν ν ν ν ν ν ν ν	. Does ,perty	5 not 3.	have	0	(D No. Pro	ber. D	bes y	not	ha	ve			
ν ν ν ν ν ν ν	. Does perty	s not 3.	have	0	(7 No. Pro	ber. D	ves ty	not	ha	ve			

 $t_3:$ (8) (9) $t_4:$ (7) (9)
 Yes.
 Notes · · · ·
 1. Property 1 is required for a max-heap. In a min-heap, the parent's key is at most as large as the keys of its children.
 2. Given a set of keys there may be several binary trees that satisfy the heap properties. Hence a heap is not unique.
3. For each node, both its right subtree and its left subtree are heaps. (Hence: suitable for recursion).
4. In a max-heap, the maximum key is always at the root.
 Both subtrees are heaps.

Heap parameters	n = number of nodes in heap
	n_{leaf} = number of leaves in a heap
	h = height of heap
Relationships:	$2^{h} \leq n < 2^{h+1}$
	$h = \lfloor \log_2(n) \rfloor$
	$n_{leaf} = \lceil n/2 \rceil$
A priority queue is ofte	n implemented using a heap.
Priority queue:	
- a collection of items	each having a priority
- allows easy access to	o the item with the highest priority
- allows the item with t	he highest priority to be removed
- allows new item to be	e added to
2. Heap algorithms	
Assume the following	are always available:
<i>node.parent</i> = pointer	to parent of node or NIL if node is <i>heapRoot</i>
node.left = pointer to I	eft child of node or NIL if there is no left child
<i>node.right</i> = pointer to	right child of node or NIL if there is no right child

node	e.key	= key	v value	e ass	ociat	ed wi	th noc	le									
heap	pRoo	t = roc	ot nod	le of	heap	(repr	esent	s enti	re he	ap)							
heig	<i>ht</i> = t	he he	ight o	f the	heap												
Four	r algo	rithm	S:														
HEA	P-IN	SERT	: allov	ws in:	sertio	n of a	a new	node	into	an ex	isting	heap					
HEA there	\PIFY eby n	: for a naking	a bina y a he	ry tre ap	e (or	subtr	ee) la	cking	prop	erty ′	1 at th	e roo	t, res	tores	this p	oropei	ty
BUIL prop	_D-HI perty t	EAP: 1 hereb	for a t by mal	binar <u></u> king a	y tree a hea	lacki p	ng pr	operty	y 1 at	any	(and p	ossib	ly all) nod	es, re	store	s th
the r	maxin	NUM K	ey	doco	de												
$ \begin{array}{c} 1 \\ 2 \\ - 3 \\ 4 \\ 5 \\ - 6 \\ 7 \\ 8 \\ - 9 \\ 10 \\ 11 \\ - 12 \\ 13 \\ 14 \\ - 15 \\ 16 \\ 17 \\ - \end{array} $	HEA inp new if else end /* node cor whi t	P-INSEI ut a h node t depth inser eight = inser After to port rect l le (nod SWAP(n	RT(heap eap which at she height the node theight + t node this i ercolat ocation $de \neq headode, not$	pRoot, nose r nould is not as th - 1 as th nsertifice up n. */ upRoot ode.pare	node) oot no be add t yet ne righ ne fir on , n in the and ne ent)	de is ded to full c htmost st (le code no e heap ode.key	speci the h of leav leaf ftmost w has until > node.	fied by eap res the at dep .) leat it fi parent.k	y heap en pth he f at c ent. W nds i cey)	Root an ight lepth J Ve allor ts	nd a neight w						
NO	TE: Ir	n a SV	VAP a	a noc	le reta	ains i	ts key	, but	its pc	inters	s are ı	update	əd.				

2	10	node	y = (4)	()			2 +) (5	B	4)	
3	16	nod	2 = 6			11	14) 2) 6) (8	<u>\</u>	
4	<u></u> {0	node	¥ (3	(7)	5 (3)	?			
HEA	P-EXTR/	⊲СТ-МАХ- β	oseudoc	ode							
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \end{array} $	HEAP-E2 input a /* The rightm heap p max = h ▷ let heapRoo ▷ remo if node height end HEAPIEY	$\begin{aligned} & \text{XTRACT-MAX}(h \\ \text{a heap whose} \\ \text{root of the} \\ \text{ost leaf at} \\ \text{roperties}, t \\ eapRoot.key \\ node be the \\ t.key = node.k \\ \text{ve node from} \\ \text{was the on} \\ t = height - 1 \end{aligned}$	eapRoot) root noo heap is the lowes he key of rightmost ey the heap y node a	le is sp removed st depth f the or leaf at t depth	ecified b and repla . After r iginal roc depth he height	y heapRoot aced by t estoring ot is retu eight	he the rned. *	/			

HEAP-INSERT efficiency													
Q: How many iterations in while -	•	1 2 3	HEAP inpu new	–INSERT tahea nodeth	T(<i>heapRo</i> up whose at shou	ot, node e root ld be a	e) node is added to	specif the he	ied by eap	heapRoot	t and a	·	
A: At most one more than height	of		if d ▷ else her ▷	epth he insert ght = he insert	ight is node as ight + 1 node as	not ye the r	t full ightmos irst (le	of leav t leaf eftmost	es <mark>then</mark> at dept) leaf	h <i>height</i> at dept	h height		
the starting heap (so <i>h</i> +1).			/* A node corr whil	fter th to per ect loc e (node WAP(nod	nis insecolate colate cation. $\neq heapR$ de, node.	ertion , up in t */ oot and parent)	node no the hear node.key	w has a until > node.p	a paren it fine warent.kej	t. We a ds its y)	llow	_	
		17 =	end	2009.00.00									
runtime efficiency of HEAP-INSERT	·		O(h)) = (O(log	$(2^{n})^{-1}$							
HEAPIFY efficiency													
Q: How many iterations in while -lo	oop?		1 2 3 4	HEAP input one p /* A	IFY(<i>heaph</i> a heap particula 11 nodes	Root, nod whose n ar node in the	e1) root node (node1) heap, e:	e is spe of the h scept fo	cified l neap r possil	by heapRo	pot and		
A: At most height of the starting he	ap (s	o <i>h</i>).	6 7 8 9 	its of $node2$ while nod L =	= NIL $= (node1 = node1.lef$	t = node2)	ode1.right	e anow	nouel to	UTEKIE	down to	,	
			12 13 14 15 16 17	if enc if	(L exis) node2 = L (R exis) node2 = R	ts and , , ts and . ?	L.key > no R.key > no	de2.key) de2.key)	then then				
			18 19 20 21	if S end	(node1 ≠ WAP(node I	node2) t 1, node2	hen)						
runtime efficiency of HEAPIFY:		O(h) = 0	O(log	$\binom{n}{2}$								

	depth	number of nodes	simple operations in a single HEAPIFY	total simple operations	
	h	(n+1)/2	0 (no calls to HEAPIFY	[^]) 0	
	h - 1	(n+1)/4	<i>6</i> ∕5 1	$1 \cdot (n+1)/4$	
	h-2	(n+1)/8	2	$2 \cdot (n+1)/8$	
	h-3	(n+1)/16	3	$3 \cdot (n+1)/16$	
	:	ŧ			
	0	$(n+1)/2^h \; (=1)$	h	$h \cdot (n+1)/2^h$	
Su	m of all sin	nple operations:			
	<u></u>	$\frac{+1}{4} + \frac{2(n+1)}{2} + \frac{1}{2}$	$\frac{3(n+1)}{10} + \dots \frac{h(n+1)}{2h}$		
		$4 \qquad 8$	10 2"		
	= (n	$(+1) \sum_{i=1}^{k} \overline{2^{i+1}}$	-		
	< 2($(n+1)\sum_{i=1}^{h}\frac{i}{i}=0$	$(n+1)\sum_{i=1}^{h} \frac{i}{i}$		
	22($(n+1)\sum_{i=1}^{n} 2^{i+1} = 0$	$(n+1)\sum_{i=1}^{n-1} 2^{i}$		
lt ca	an be show	$\frac{n}{\sum} \frac{i}{i} = 1$	$2 - \frac{h+2}{2} < 2$		
		$\sum_{i=1}^{2^i} 2^i$	2 ⁿ		
Conclu	usion:	n+1 2($n+1$)	3(n+1) $h(n+1)$	1) $\sum_{i=1}^{h} i$	5.64
		$\frac{-}{4} + \frac{-}{8}$	$+ \frac{16}{16} + \dots \frac{2^{h}}{2^{h}}$	$-\leq (n+1)\sum_{i=1}^{n} \frac{1}{2^i} < 2(n)$	+ 1
	1 I				
runti	me efficien				

Täm	ä teos on	lisensoitu	Creative (Commo	ns Nimeä·	EiKaupa	llinen-				
EiMu <u>http:</u>	uutoksia 4. //creativec	0 Kansair commons.c	välinen -li org/license	senssil s/by-no	lä. Tarkas c-nd/4.0/.	tele liser	issiä os	oittee	ssa		
tekija	ä: Frank C	ameron									
Thia	work in lin		dor the Cr	ootive (Commons	Attributio	n				
Non	Commercia	al-NoDeriv	atives 4.0	Interna	ational Lic	ense. To	view a	сору	of		
this I	license, vi	sit <u>http://cr</u>	eativecom	mons.c	org/license	es/by-nc-	<u>nd/4.0/</u> .				
mad	e by Frank	Cameror	1							 	
6	20	3									
C											
_											