The heap data structure

1. Heap background
2. Heap algorithms
3. Runtime efficiencies

1. Heap background

A heap is a binary tree with certain properties.

Assumption: each vertex (node) in the binary tree has a value (a key) associated with it

To be a heap a binary tree must have the following properties:
property 1: the parent's key is at least as large as the keys of its children
property 2: all depths, except possibly the largest, have the maximum number of nodes

property 3: at the largest depth, any missing nodes (leaves) are at the right end

Example Is the binary tree a heap?

No. Does not have No. Does not hove

Prg?&r§-7 3, Prq?%r"al 1

Notes

1. Property 1 is required for a max-heap. In a min-heap, the parent's key is at most as large
as the keys of its children.

2. Given a set of keys there may be several binary trees that satisfy the heap properties.
Hence a heap is not unique.

3. For each node, both its right subtree and its left subtree are heaps. (Hence: suitable for
recursion).

4. In a max-heap, the maximum key is always at the root.

Both subtrees are heaps.

Heap parameters n = number of nodes in heap

Nieqy = mumber of leaves in a heap

h = height of heap

Relationships: I < e PHH]

h = [log,(n)]|
Rpaf= [1i2]

A priority queue is often implemented using a heap.
Priority queue:

- a collection of items each having a priority

- allows easy access to the item with the highest priority
- allows the item with the highest priority to be removed

- allows new item to be added to

2. Heap algorithms

Assume the following are always available:
node.parent = pointer to parent of node or NIL if node is heapRoot
node.left = pointer to left child of node or NIL if there is no left child

node.right = pointer to right child of node or NIL if there is no right child

node.key = key value associated with node
heapRoot = root node of heap (represents entire heap)

height = the height of the heap

Four algorithms:
HEAP-INSERT: allows insertion of a new node into an existing heap

HEAPIFY: for a binary tree (or subtree) lacking property 1 at the root, restores this property
thereby making a heap

BUILD-HEAP: for a binary tree lacking property 1 at any (and possibly all) nodes, restores this
property thereby making a heap

HEAP-EXTRACT-MAX: removes the root from a heap, restores the heap properties and returns
the maximum key

HEAP-INSERT-pseudocode

1 HEAP-INSERT (heapRoot , node)

2 input a heap whose root node is specified by heapRoot and a
3 new node that should be added to the heap

4

5 if depth height is not yet full of leaves then

G > insert node as the rightmost leaf at depth height

7 else

8 height = height + 1

9 > insert node as the first (leftmost) leaf at depth height
10 end

11

12 /% After this insertion , node now has a parent. We allow
13 node to percolate up in the heap until it finds its

14 correct location. =/

15 while (node # heapRoot and node.key > node.parent.key)

16 SWAP(node , node.parent)

b end

NOTE: In a SWAP a node retains its key, but its pointers are updated.

Example

heap at start:

(1)
e 0 node to add @
N ® 6 G
® @& |

stage line new heap
b D
O (11)
O OROMO
— W6
* 16 @
O (11)
OENONONO
OO0
3 16 D
(11)

|

HEAPIFY-pseudocode

1 HEAPIFY (heapRoot , nodel)
2 input a heap whose root node is specified by heapRoot and
3 one particular node (nodel) of the heap
4 /# All nodes in the heap., except for possibly nodel,
5 have the heap properties. We allow nodel to trickle down to
§ its correct location.
i
8 node2 = NIL
9 while (nodel # node2)
10 node2 = nodel
11 L = nodelleft, R = nodel.right
12 if (L exists and L.key > node2.key) then
13 node2 = L
14 end
15 if (R exists and R.key > node2.key) then
16 node2 = R
17 end
18 if (nodel # node2) then
19 SWAP(nodel | node2)
20 end
21 end
Example

starting e
binary tree

nodel: @

stage line computation or new heap

1 10 node 2 = @
2 1 L= (v

19

10 1
J

1¢ hode 2 =

19

¢ 11
)

BUILD-HEAP-pseudocode

L R e

=] &

node 2

®

R

L sNIL Rz NIL

BUILDHEAP (heap Root)

input a binary tree whose root node is specified by heapRoot
/* The input binary tree may lack property 1 at any or all
of its nodes. As such all nodes, except for the current

leaves ., must be checked and if necessarv modified so that

the final output is a binary tree which

for i from height —1 to 0
forEach internal node at
HEAPIFY (heapRoot , node)
end
end

depth @ from

is a heap. =,

right

to

left

Example

starting
binary tree

L= oeder nodes
Gr e LCW\(J/‘&J

)

v order Suhkeq‘os

Gre proces sed

stage line new binary tree

1 10 hoede = @ (3)
O O

SRR

10 hede = @ o

10 nGdP.:@ 0

{6 node = @ /

HEAP-EXTRACT-MAX-pseudocode

L N

o RS |

10
11
12

14
15

HEAP-EXTRACT-MAX(heapRoot)

input a heap whose root node is specified by heapRoot

[+ The root of the heap is removed and replaced by the
rightmost leaf at the lowest depth. After restoring the
heap properties, the key of the original root is returned. x/

max = heapRoot key
= let node be the rightmost leaf at depth height
heapRoot key = node.key
> remove node from the heap
if node was the only node at depth height
height = height — 1
end
HEAPIFY (heapRoot | heapRoot)
return max

Example

h t start @
eap at start:
" &) (1)

stage line new heap or computation
1 7)87 Yho\x:'\L},hOde:@
a °), 16

3 {4 ¢

3. Runtime efficiencies

What are the runtime efficiencies of HEAP-INSERT, HEAPIFY, BUILD-HEAP and HEAP-
EXTRACT-MAX?

HEAP-INSERT efficiency

1 HEAP-INSERT (heapRoot , node)
Q HOW many Iteratlons In Whlle' 2 input a heap whose root u.n.dz' is specified by heapRoot and a
3 new node that should be added to the heap
loop? 4
5 if depth height is not yet full of leaves then
6 > insert node as the rightmost leaf at depth height
7 else
8 height = height + 1

A- At most one more than helght Of 9 > insert nede as the first (leftmost) leaf at depth height

10 end
the starting heap (so h+1). u
12 /% After this insertion , node now has a parent. We allow
13 node to percolate up in the heap until it finds its
14 correct location. =/
15 while (node # heapRoot and node.key > node.parent.key)
SWAP(node , node.parent)
i end

runtime efficiency of HEAP-INSERT: O(h) = O(log, n)

HEAPIFY efficiency

1 HEAPIFY (heapRoot , nodel)
. H H H H 2 input a heap whose root node is specified by heapRoot and

Q' HOW many Iteratlons In Whlle-loopr) 3 nnl: pnrtiru‘la r node (nodel) of T]l(‘l heap ’
4 * All nodes in the heap, except for possibly nodel,
5 have the heap properties. We allow nodel to trickle down to
6 its correct location. =
7
8 node2 = NIL

A A 9 while (nodel # node2)

A: At most height of the starting heap (so h). = = it
11 L = nodelleft. R = nodel.right
12 if (L exists and L.key > node2.key) then
13 node2 = L
14 end
15 if (R exists and R.key > node2.key) then
16 node2 = R
17 end
18 if (nodel # node2) then
19 SWAP(nodel |, node2)
20 end
21 end

runtime efficiency of HEAPIFY: O(h) = O(log, n)

HEAP-EXTRACT-MAX efficiency

Q: What is the runtime efficiency of
HEAP-EXTRACT-MAX?

A: The same as that of HEAPIFY.

S D 00 =1 o Ul L BD e

— e
(LI O TR

HEAP-EXTRACT-MAX(heapRoat)

input a heap whose root node is specified by heapRoot

/% The root of the heap is removed and replaced by the
rightmost leaf at the lowest depth. After restoring the
heap properties, the key of the original root is returned. =/

maa = heapRoot key
> let node be the rightmost leaf at depth height
heapRoot key — node.key
i remove nede from the heap
if node was the only node at depth height
height = height — 1
end
HEAPIFY (heapRoot)
return maz

runtime efficiency of HEAP-EXTRACT-MAX:

BUILDHEAP efficiency

Assumption: starting heap is a
complete binary tree, son =2M1 -1,

AR A

L4
L)

O

O(h) = O(log, n)

BUILDHEAP (heapRoot)
input a binary tree whose root node is specified by heapRoot
/* The input binary tree may lack property 1 at any or all
of its nodes. As such all nodes, except for the current
leaves ., must be checked and if necessary modified so that
the final output is a binary tree which is a heap. #/
for ¢ from height—1 to 0

forEach internal node at depth ¢ from right to left

HEAPIFY (heapRaot , node)

end

end
hun—»Lbr a¥h00'es
\ e h-2
.

<« h~1

N gy e T E 3

O

depth number simple operations total simple

of nodes in a single HEAPIFY operations
h (n+1)/2 0 {no calls to HEAPIFY) 0
| (n+1)/4 AN 1 1-(n+1)/4
h—2 (n+1)/8 f{,\Zx 2 2-(n+1)/8
h—3 (n+1)/16 3 3-(n+1)/16
0 (n+1)/2" (=1) h h-(n+1)/2"

Sum of all simple operations:

n+1 . 2(n+1) + 3n+1) N hin+1)
1 8 16 R

i=1 i=1
It can be shown: ; 1 h+2
Y ==2- <9
i h
i=1 °
Y k.
Conclusion: n+l 2n+1) 3n+1) hin+1) _ i -
+ + + ... —— < (n+1 — < 2(n+1
4 8 16 il I:); 2 {)

runtime efficiency of BUILDHEAP: O(n)

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

0o

