
The heap data structure

1. Heap background
2. Heap algorithms
3. Runtime efficiencies

1. Heap background

A heap is a binary tree with certain properties.

Assumption: each vertex (node) in the binary tree has a value (a key) associated with it

To be a heap a binary tree must have the following properties:

property 1: the parent's key is at least as large as the keys of its children

property 2: all depths, except possibly the largest, have the maximum number of nodes

property 3: at the largest depth, any missing nodes (leaves) are at the right end

Example Is the binary tree a heap?

Notes

1. Property 1 is required for a max-heap. In a min-heap, the parent's key is at most as large
as the keys of its children.

2. Given a set of keys there may be several binary trees that satisfy the heap properties.
Hence a heap is not unique.

3. For each node, both its right subtree and its left subtree are heaps. (Hence: suitable for
recursion).

4. In a max-heap, the maximum key is always at the root.

Both subtrees are heaps.

Heap parameters

Relationships:

A priority queue is often implemented using a heap.

Priority queue:

- a collection of items each having a priority

- allows easy access to the item with the highest priority

- allows the item with the highest priority to be removed

- allows new item to be added to

2. Heap algorithms

Assume the following are always available:

node.parent = pointer to parent of node or NIL if node is heapRoot

node.left = pointer to left child of node or NIL if there is no left child

node.right = pointer to right child of node or NIL if there is no right child

Four algorithms:

HEAP-INSERT: allows insertion of a new node into an existing heap

HEAPIFY: for a binary tree (or subtree) lacking property 1 at the root, restores this property
thereby making a heap

BUILD-HEAP: for a binary tree lacking property 1 at any (and possibly all) nodes, restores this
property thereby making a heap

HEAP-EXTRACT-MAX: removes the root from a heap, restores the heap properties and returns
the maximum key

node.key = key value associated with node

heapRoot = root node of heap (represents entire heap)

height = the height of the heap

HEAP-INSERT-pseudocode

NOTE: In a SWAP a node retains its key, but its pointers are updated.

Example

heap at start:
node to add

stage line new heap

HEAPIFY-pseudocode

Example

starting
binary tree node1:

stage line computation or new heap

BUILD-HEAP-pseudocode

Example

starting
binary tree

stage line new binary tree

HEAP-EXTRACT-MAX-pseudocode

Example

heap at start:

stage line new heap or computation

3. Runtime efficiencies

What are the runtime efficiencies of HEAP-INSERT, HEAPIFY, BUILD-HEAP and HEAP-
EXTRACT-MAX?

HEAP-INSERT efficiency

Q: How many iterations in while-
loop?

A: At most one more than height of
the starting heap (so h+1).

runtime efficiency of HEAP-INSERT:

HEAPIFY efficiency

Q: How many iterations in while-loop?

A: At most height of the starting heap (so h).

runtime efficiency of HEAPIFY:

Q: What is the runtime efficiency of
HEAP-EXTRACT-MAX?

A: The same as that of HEAPIFY.

HEAP-EXTRACT-MAX efficiency

runtime efficiency of HEAP-EXTRACT-MAX:

BUILDHEAP efficiency

Assumption: starting heap is a
complete binary tree, so n = 2h+1 - 1.

Sum of all simple operations:

It can be shown:

Conclusion:

runtime efficiency of BUILDHEAP:

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

