Quicksort: a divide and conquer sorting algorithm

- 1. Introduction
- 2. Partitioning
- 3. Quicksort computation

1. Introduction

- Q: What does Quicksort do?
- A: Quicksort will place elements in an array in order (smallest to largest or largest to smallest).

Quicksort properties:

- does not require extra sorting space (in place sorting)
- uses divide-and-conquer
- almost always presented as recursive
- uses partitioning
- Q: What is partitioning?
- A: Splitting array elements into (at least) two groups.

Before partitioning: array has no particular order

A[1]	A[2]	A[3]		A[n]
------	------	------	--	------

After partitioning (2 groups): elements A[1..p] have a property and elements A[(p + 1)..n] lack property

$A[1]$ $A[2]$ \dots $A[p]$ $A[p+1]$ \dots $A[n]$						
These have the property. These do not have the property.						
Example						
starting array: $A = \begin{bmatrix} 12 & 6 & 9 & 18 & 11 & 3 & 4 & 10 \end{bmatrix}$						
(1) Partitioning according to whether number is odd or not						
after partitioning: $A =$ 11 9 3 18 12 6 4 10						
elements A[13] are odd and elements A[48] are even						
(2) Partitioning with respect to pivot 10						
Pivot: a number a used for partitioning.						
After partitioning: numbers at left end of <i>A</i> are at most a and numbers at right end of <i>A</i> are at least a.						

after partitioning:	<i>A</i> =	4	9	3	6	10	18	11	12
	, i —		-		-				

elements A[1..5] are less than or equal to 10 and elements A[6..8] are greater than

Partitioning in quicksort is done using a pivot a that is an element of the array.

Consider partitioning using final element *A*[n] as pivot:

starting array: A[1] A[2] A[3] ... $\alpha = A[n]$

after partitioning when pivot a is at its correct location:

k ele	iment:	2			(n-k)	element	2		
elements $A[1k]$ are less than or equal to α					elements $A[(k+1)n]$ are greater than				
A[1]	A[2]		A[k-1]	$A[k] = \alpha$	A[k+1]	2.2.2	A[n]		

 α

Insight: α is in correct position if we want to sort entire array from smallest to largest.

2. Partitioning

Pseudocode

PARTITION(A, L, R)1 2 input number array A, L is index of leftmost element to be 3 handled, R is index of rightmost element to be handled /* We partition subarray A[L..R] using A[R] as the pivot, which we 4 denote as α . Let the final location of pivot α be $k, L \leq k \leq R$. 5 6 After execution elements A[L..(k-1)] are less than or equal to α and elements A[(k+1)..R] are greater than α . The procedure 7 returns location k. */ 8 9 $\alpha = A[R], \quad cut = L - 1$ for j = L to R - 110 if $A[j] \leq \alpha$ then 11 cut = cut + 1, swap elements A[cut] and A[j]1213end 14 end 15 k = cut + 1, swap elements A[k] and A[R]16return k

cut = the current dividing line between the small elements and the large elements

Example

starting array: $A = \begin{bmatrix} 10 & 4 & 2 & 6 & 9 & 3 & 8 & 5 \end{bmatrix}$

compute PARTITION(A, 1, 8)

step	o code line(s)	computation	array A	∱ = J	↑ = cu ⁱ	ł
1	-	L=1 R=8	10 4	26	9 3	8 5
2	9	$\alpha = 5$, $cut = 0$				
3	10, 11	j = 1	10 4 M M	2 6	9 3	8 5
3	10, 11, 12	j=2, cut=1, A[1]=4, A[2]=10		2 6 6	3 3	8 5
դ	10, 11, 12	J=3, cut = 2 A[2]=2, A[3]=10	4 10 2 1 10 2	6 9	3 8	5
5	10 _, 11	J= 4	4 2 10	6 9	3 8	5
			ſ	Ţ		
6	10, 11	j = 5	4 2 10	6 9	3 8	5
			Ŷ	ſ		
7	10, 11,12	J = 6, cut = 3	4 2 10	6 9	3 8 	5
		A[3]=3 , A[6]=10	<u> </u>	<u> </u>	<u>۲</u>	
B	10,11) = 7	4 2 3	6 9	10 8	5
	-	v	· · · · · · · · · · · · · · · · · · ·	II	Ŷ	

Comments on PARTITION:

G

- choice of pivot element (α) is often randomized
- one goal: keep number of element swaps small
- PARTITION uses one approach for swapping; there are others
- to put pivot into correct location only requires one swap (line 15)
- similar approach can be used for other partitioning problems e.g. finding median

3. Quicksort computation

After partitioning when pivot a is at its correct location:

A[1] $A[2]$	$A[k-1] A[k] = \alpha$	A[k+1]	\dots $A[n]$
-------------	-------------------------	--------	----------------

elements A[1..k] are less than or equal to α

elements A[(k+1)..n] are greater than α :

Insight: a is in correct position if we want to sort entire array from smallest to largest.

Consequence: we can sort the subarrays to left a and the right of a **Divide and conquer!**

But ...

Are A[1..k] and A[(k+1)..n] (roughly) the same size?

Depends on choice of pivot.

Quicksort: description

We start with array A[1..n] of numbers in no particular order. We want to rearrange the array so that the numbers are in order from smallest to largest.
 We partition A[1..n] with respect to A[n] = α, such that after partitioning: (i) α is in its correct position k, (ii) elements A[1..(k-1)] are less than or equal to α, (iii) elements A[(k+1)..n] are greater than or equal to α.
 We can now apply the same algorithm to subarrays A[1..(k-1)] and A[(k+1)..n]. We continue recursing until the size of the subarray is 1 or 0.

Quicksort: pseudocode

```
1 QUICKSORT(A, L, R)
```

- 2 input number array A, L is index of leftmost element to be
- 3 handled, R is index of rightmost element to be handled
- 4 /* We sort the subarray A[L.R] from smallest to largest using the

```
5 quicksort algorithm. */
```

```
6 if L < R then
```

```
7 k = PARTITION(A, L, R)
```

- 8 QUICKSORT(A, L, k-1)
- 9 QUICKSORT(A, k+1, R)
- 10 end

Example

starting array: $A = \begin{bmatrix} 10 & 4 & 2 & 6 & 9 & 3 & 8 & 5 \end{bmatrix}$

compute QUICKSORT(A, 1, 8)

step	recursion level	code line(s)	computation	array A _ ↑ = k
1	1	~	L=1, R=8	10 4 2 6 9 3 8 5
2	1	7	k = PARTITION(A,1,8) k ≍ Ѱ	4 2 3 5 9 10 8 G
3	1	8	QUICKSORT(A,1,3)	
4	ス	7	k = PARTITION(A,1,3) k = 2	2 3 4 5 9 10 8 C
5	2	8	QUICKSORT(A,1,1)	
C	2	9	QUICKSORT(A,3,3)	
7	1	٩	QUICKSORT(A,5,8)	
8	ス	7	k = PARTITION(A,5,8)	2 3 4 5 6 10 8 9
			k = 5	Ŷ
9	ょ	8	QUICKSORT(A,5,4)	
10	2	q	QUICKSORT(A,6,8)	
11	3	7	k = PARTITION(A,6,8)	2 3 4 5 6 8 9 10
• • •			k = 7	↑ □

Comments on QUICKSORT:

- amount of pseudocode deceptive since PARTITION does all the work
- interpretation: recursively find final locations of each element

• variation: call to QUICKSORT replaced by call to simpler sorting algorithm (often insertion sort) when array size 'small'

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

made by Frank Cameron

