Quicksort: a divide and conquer sorting algorithm

1. Introduction
2. Partitioning
3. Quicksort computation

1. Introduction

Q: What does Quicksort do?

A: Quicksort will place elements in an array in order (smallest to largest or largest to smallest).

Quicksort properties:

* does not require extra sorting space (in place sorting)
* uses divide-and-conquer

» almost always presented as recursive

* uses partitioning

Q: What is partitioning?

A: Splitting array elements into (at least) two groups.

Before partitioning: array has no particular order

| Al | A2] | AB] | ... | Aln] |

After partitioning (2 groups): elements A[1..p] have a propery and elements A[(p + 1)..n] lack
property

| A[1] | A[2] | | Alp] | Alp+1] | | Aln] |
- ~— A 3

—
Tkese_ \'xcwe, he pvoper\'y‘ Thes& dho ho’r Lwe the P“OPW*y.

Example

startingarray: A= [12 [6 [0 [I8 J11 [3 [4] 10]

(1) Partitioning according to whether number is odd or not

after partitioning: A= [11]9 [3 18126] 47 10]

elements A[1..3] are odd and elements A[4..8] are even

(2) Partitioning with respect to pivot 10

Pivot: a number a used for partitioning.

After partitioning: numbers at left end of A are at most a and numbers at right end of A are at
least a.

after partitioning: A= [4]9]3]6]10]18] 11] 12]

elements A[1..5] are less than or equal to 10 and elements A[6..8] are greater than

[

Partitioning in quicksort is done using a pivot a that is an element of the array.

AL) I Afa) I . .- : * l . . I Aln-1] I A(n]
\‘—_"_\T' — %
These are £ ad , T")ese are > o,

Consider partitioning using final element A[n] as pivot:

starting array: (A JARI] AR ... a = Aln]

after partitioning when pivot a is at its correct location:

A [AR ... | Ak—1] | A]l=a | Ak+1] | ... | Al

clements A[1..£] arc less than or equal to a elements A[(k + 1)..n] are greater than o
el

k ?:mcn*’S (h—lC) (’:l%mofﬂ’s

Insight: a is in correct position if we want to sort entire array from smallest to largest.

2. Partitioning

Pseudocode

1 PARTITION(A, L, R)

2 input number array A, L is index of leftmost clement to be

3 handled, R is index of rightmost clement to be handled

4 /* We partition subarray A[L.R] using A[R] as the pivot, which we
5 denote as a. Let the final location of pivoet e be b, L<E<R.

6 After exccution clements A[L.(k—1)] are less than or cqual to «a
7 and clements A[(k+1)..R] arc greater than a. The procedure

8 returns location k. *,.r'
9 a=AR], cut=L-1

10 for j=L to HR—1

11 if Aj]<a then

12 cut = cut +1, swap clements Afcut] and A[j]
13 end

14 end

15 k=cut+1, swap clements A[k] and A[R]

16 return k

cut = the current dividing line between the small elements and the large elements

Example

startingarray: A= | 10 |4 | 26| o][3]8] 35|

compute PARTITION(A, 1, 8)

cuk

Az

f=

array A

computation

code
line(s)

step

10,19

3

[14]
0
'Y
o
(8 4
~
<
-
<=
e |«
<
(]
Load
))
Yan
- S
J
o
n <
4 -
= =
v oop
-
£ ~—
vy
— <
s
-~
«-l)
-—
.U\
—
A D]

4

IXERER! , Als]= 10

cul

)

=3

10,11,12 J

4,

Y

)z

10 11

5

¢

5, cut = 3

)

1

B

15 ‘<"—' l", /"—\\
AT¥l=s ALel=C 4 ‘] 2 ‘]

Comments on PARTITION:

* choice of pivot element (a) is often randomized

» one goal: keep number of element swaps small

* PARTITION uses one approach for swapping; there are others

* to put pivot into correct location only requires one swap (line 15)

* similar approach can be used for other partitioning problems e.g. finding median

3. Quicksort computation

After partitioning when pivot a is at its correct location:

A AR ... | Ak—-1 | Ak]l=a | Ak+1]| ... | A |

clements A[1../] arc less than or equal to a elements A[(k + 1)..n] are greater than o

Insight: a is in correct position if we want to sort entire array from smallest to largest.

Consequence: we can sort the subarrays to left a and the right of a
Divide and conquer!

But ...
Are A[1..k] and A[(k+1)..n] (roughly) the same size?

Depends on choice of pivot.

Quicksort: description

1. We start with array A[l.n] of numbers in no particular
order. We want to rearrange the array so that the numbers
are in order from smallest to largest.

2. We partition A[l.n] with respeet to Aln]j=a, such that
after partitioning: (i) a is in its correct position k,

(ii) clements A[l.(k—1)] arc less than or cqual to a,

(ii1) clements A[(k+1).n] arc greater than or~egual—bo a.

3. We can now apply the same algorithm to subarrays A[L.(k—1)]
and A[(k+1).n]. We continue recursing until the size of the
subarray is 1 or 0.

Quicksort: pseudocode

1 QUICKSORT(A, L, R)

2 input number array A, L is index of leftmost clement to be

3 handled , R is index of rightmost clement to be handled

k| /* We sort the subarray A[L.R] from smallest to largest using the
5 quicksort algorithm. x/

6 if L <R then

T k = PARTITION(A, L, R)

8 QUICKSORT(A. L, k-1)

9 QUICKSORT(A, k+1, R)

10 end

Example

starting array: A=

(10 (42]6]la]a3l8] 5]

compute QUICKSORT(A, 1, 8)

step Irg\?glrsion ﬁgg?s) computation array A d=k
IR BNDODDD
2 1 g k = PARTITION(A,1,8) y lI 2 lI s } 5 l] 9 |I,ol] B ll
k=4 p
3 1 8 QUICKSORT(A,1,3)
Y3 3 k = PARTITION(A,1,3) 2 ']3 '! 4 ', 5 ', 9 ',*01, B ',
k=2 b
5 2 8 QUICKSORT(A,1,1)
G 2 b QUICKSORT(A,3,3)
7 4 9 QUICKSORT(A,5,8)
g 2 3 k = PARTITION(A,5,8) 2 |]3 lz 4 ll 5|] ¢ llm\I 8 }
k=5 b
9 2 8 QUICKSORT(A,5,4)
10 2 9 QUICKSORT(A,6,8)
1 3 + k = PARTITION(A,6,8) 2 ll 3 ll y ll sll c ll B Il g } 10
. ko ? ?

Comments on QUICKSORT:
» amount of pseudocode deceptive since PARTITION does all the work
* interpretation: recursively find final locations of each element

« variation: call to QUICKSORT replaced by call to simpler sorting algorithm (often insertion sort)
when array size 'small’

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

