
Quicksort: a divide and conquer sorting algorithm

1. Introduction
2. Partitioning
3. Quicksort computation

1. Introduction

Q: What does Quicksort do?

A: Quicksort will place elements in an array in order (smallest to largest or largest to smallest).

Quicksort properties:

• does not require extra sorting space (in place sorting)

• uses divide-and-conquer

• almost always presented as recursive

• uses partitioning

Q: What is partitioning?

A: Splitting array elements into (at least) two groups.

Before partitioning: array has no particular order

After partitioning (2 groups): elements A[1..p] have a propery and elements A[(p + 1)..n] lack
property

Example

starting array: A =

(1) Partitioning according to whether number is odd or not

after partitioning: A =

elements A[1..3] are odd and elements A[4..8] are even

(2) Partitioning with respect to pivot 10

after partitioning: A =

elements A[1..5] are less than or equal to 10 and elements A[6..8] are greater than

Pivot: a number a used for partitioning.

After partitioning: numbers at left end of A are at most a and numbers at right end of A are at
least a.

Partitioning in quicksort is done using a pivot a that is an element of the array.

Consider partitioning using final element A[n] as pivot:

starting array:

after partitioning when pivot a is at its correct location:

Insight: α is in correct position if we want to sort entire array from smallest to largest.

2. Partitioning

Pseudocode

cut = the current dividing line between the small elements and the large elements

Example

starting array: A =

compute PARTITION(A, 1, 8)

step code
line(s)

computation array A

Comments on PARTITION:

• choice of pivot element (α) is often randomized

• one goal: keep number of element swaps small

• PARTITION uses one approach for swapping; there are others

• to put pivot into correct location only requires one swap (line 15)

• similar approach can be used for other partitioning problems e.g. finding median

3. Quicksort computation

After partitioning when pivot a is at its correct location:

Insight: a is in correct position if we want to sort entire array from smallest to largest.

Consequence: we can sort the subarrays to left a and the right of a
Divide and conquer!

But ...

Are A[1..k] and A[(k+1)..n] (roughly) the same size?

Depends on choice of pivot.

Quicksort: description

Quicksort: pseudocode

Example

starting array: A =

compute QUICKSORT(A, 1, 8)

step code
line(s) computation array A

recursion
level

k = PARTITION(A,1,8)

QUICKSORT(A,1,3)

k = PARTITION(A,1,3)

QUICKSORT(A,1,1)

QUICKSORT(A,3,3)

QUICKSORT(A,5,8)

k = PARTITION(A,5,8)

QUICKSORT(A,5,4)

QUICKSORT(A,6,8)

k = PARTITION(A,6,8)

Comments on QUICKSORT:

• amount of pseudocode deceptive since PARTITION does all the work

• interpretation: recursively find final locations of each element

• variation: call to QUICKSORT replaced by call to simpler sorting algorithm (often insertion sort)
when array size ’small’

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

