Algorithm design techniques: randomization

1. Introduction to randomization
2. Quicksort
3. Linear search

1. Introduction to randomization

Categories of design techniques

Category I: techniques to handle entire computation problem
- decrease and conquer (incremental)

- divide and conquer

- dynamic programming

- tranform and conquer

Category lI: techniques to be used in conjunction with other techniques
- randomization

Deterministic algorithm: no randomization

Randomized algorithm: randomization intentionally added

Even when the input data are fixed, a randomized algorithm will not behave the same way
each time it is run.

Q: Why use a randomized algorithm?
A 1: It improves the algorithm's behaviour.

A 2: A deterministic algorithm may have a worst case that significantly degrades the algorithm
behaviour. A randomized algorithm may avoid the worst case.

Successful applications of randomized algorithms:
- searching and sorting: quicksort and hash tables

- optimization: simulated annealing, genetic algorithms

Randomization: pluses and minuses
+ shown to work in practice

+ worst case should be no more probable than any other case

- adding randomization also takes time
- algorithm becomes more complicated
- algorithm analysis requires probability theory

- need a random number generator

2. Quicksort

Pseudocode for standard QUICKSORT

1 QUICKSORT (A, L, R)

2 input number array 4, L is index of leftmost clement to be

3 handled, R is index of rightmost clement to be handled

1 /# We sort the subarray A[L.R] from smallest to largest using the
3 quicksort algorithm. =/

] if L < R then

7 k = PARTITION(A, L, R)

8 QUICKSORT(A, L, k—1)

9 QUICKSORT(A., k+1., R)
10 end

1 PARTITION(A, L, R)

2 input number array A, L is index of leftmost clement to be

3 handled, R is index of rightmost clement to be handled

4 /+ We partition subarray A[L.R] using A[R] as thc pivot, which we
5] dcnotc as a. Let the final location of pivot a be k, LLEk<R.

6 After cxccution clements A[L.(k—1)] arc less than or cqual to a
7 and clements A[(k+1)..R] arc greater than a. The procedure

8 rcturns location k. */

9 a=AR], ct=L-1

10 for j=L to R—1

11 if A[j]<a then

12 cut =cut +1, swap clements Alcut] and A[j]
13 end

14 end

15 k=cut+1, swap clements A[k] and A[R]
16 return k

PARTITION(A, 1, n)

starting array: (A [AR (A3 | .- a=An |

after partitioning when pivot a is at its correct location:

A | AR ... [Ak-1 | Akl=a | Ak+1]]| ... | A

Worst case input

Q: What is the most number of times we will need to call QUICKSORT for array A[1..n]?

Consider runnig QUICKSORT when n = 7 for two situations:
(i) PARTITION always results in two subarrays that are as close as possible to being same size

(i) PARTITION always results in two subarrays that are as far as possible from being same size

(i) PARTITION always results in two subarrays that are as close as possible to being same size

pivot atter PARTITION

Al1] I Ala) : AL3] I Al4] I ALs] I AL€] I AL7]

e ~

Al1] I Al7] | AL3] ALs] I ALe] I AL#]
Al1] AL3] Als] Al1]

(i) PARTITION always results in two subarrays that are as far as possible from being same size

AL1] | Al2) : AL3] I Al4] | Als] | Alel I Al

o~ ~
AL1] || Al2] : AL3] I Al4) I ALs] I Afe]
o~ ~
Al1] I Al2] : AL3] I Afuy] I AL[s]
e ~
Al1] I ALa]
7

Al1]

Q: What is the most number of times we will need to call QUICKSORT for input array A[1..n]?

A: 2n-1

Q: Under what conditions do we need to call QUICKSORT 2n-1 times for input array A[1..n]?

A: When k=L or k =R for every call to k = PARTITION(A, L, R).

Let m(L,R) be the number of iterations in PARTITION(A, L, R): m(L,R)=R-L

Consider QUICKSORT(A, 1, n) when k = R for every call to k = PARTITION(A, L, R).

recursion
level calls k m(L,R)
1 k = PARTITION(A, 1, n), 01
QUICKSORT(A, 1, n-1), QUICKSORT(A, n+1, n) n
5 k = PARTITION(A, 1, n-1), 01 o
QUICKSORT(A, 1, n-2), QUICKSORT(A, n, n-1)
3 k = PARTITION(A, 1, n-2), o 3
QUICKSORT(A, 1, n-3), QUICKSORT(A, n-1, n-2)
01 k = PARTITION(A, 1, 2),) 1
QUICKSORT(A, 1, 1), QUICKSORT(A, 3, 2)
fln) =2,

Flw) 2 152« .0.v m=2 #n-1 = piy
4

Upper bound on running time of QUICKSORT: O(n"2)

Standard QUICKSORT's running time is O(n”~2) for following input arrays:

[1,2,3,..n] [n,n-1,n-2, ...1] [n/2,...2,n-1, 1, n] (neven)

Randomization

Assume procedure RANDOM(a, b) exists.

1 RANDOM(a, b)
2 input intcgers a and b
3 output a randomly gcnerated integer = such that a<z <5b

Assume RANDOM(a, b) generates each value between a and b with equal probability.

| Strategy for avoiding worst case: random choice of pivot

Use procedure RANDOMIZED-PARTITION and RANDOMIZED-QUICKSORT.

1 RANDOMIZED-PARTITION(A, L, R)

2 input number array A, L is index of leftmost clement to be
3 handled, R is index of rightmost clement to be handled
4 m=RANDOM(L, R)

5 swap clements A[R] and A[m]

6 wa=AR|, cut=L-1

7 for =L to-R-1

8 if A[j] <a then

9 cut =ecut+1, swap clements Afeut] and Afj]

10 end

11 end

12 k=cut+1, swap clements A[k] and A[R]

13 return k

RANDOMIZED-QUICKSORT(A, L, R)

input number array A, L is index of leftmost clement to be

handled, R is index of rightmost clement to be handled

if L <R then
k = RANDOMIZED-PARTITION(A, L, R)
RANDOMIZED-QUICKSORT (A, L, k-1)
RANDOMIZED-QUICKSORT (A, k+1. R)

end

D0 =3 O O e QO bl =

Il Strategy for avoiding worst case: random permutation of starting array

Random permutation also called shuffling.

Run SHUFFLE(A, 1, n) before calling standard QUICKSORT(A, 1, n).

SHUFFLE(A, a, b)
input number array Al.n]
ouput a permuted version of A, where clements Afa.b] are shuffled
for i from a to b
J =RANDOM(i, 0)

swap clements Afi] and A[j]

=1 = (551 YN [T R e b

end

3. Linear search

Pseudocode for searching number array L for x.

= & O = W

i
o w

SEARCH(L ,z)
input: int array L[0.(n—1)], int x output: int i

/* We scarch array L for integer x. If x occurs in L, wc rcturn

the first index where it occurs. otherwise we return —1.
for ¢ from 0 to L.length-1
if L[i] ==« then
return ¢
end
end
return —1

5/
=/

Running times:

- lower bound: for-loop is executed only once: (1)

- upper bound: for-loop is executed n times: O(n)

Someone tries to 'improve' SEARCH with randomization.

e = T~ 1 RS PL I - B

— =
—_— O oo

RANDOMIZED-SEARCH(L ,)
input: int array L[0.(n—1)], int x output: int i
/* We scarch array L for integer x. [If x occurs in L, we return
the first index where it occurs, otherwise we return —1. x/
SHUFFLE(L, 0, L.length—1)
for i from 0 to L.length-1

if L[i] ===z then

return ¢

end
end
return -1

For array L[O .. n-1] running time of SHUFFLE is Q(n).
So running time of RANDOMIZED-SEARCH is M(n).

Hence: running time of RANDOMIZED-SEARCH is worse than running time of SEARCH.

Conclusion: use randomization wisely

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

