
STL algorithms

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

STL algorithms

•Lots of ready-made algorithms
•Have a look at the algorithm list
(like cppreference.com)

•Algorithms take iterators as
params

•Algorithms never add/remove
elements! (invalidation)

•(There are also parallel versions
of algorithms)

STL algorithms -
examples

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

Selection-Sort(A)
1 for next_elem := 1 to A.length-1 do
2 smallest := next_elem
3 for place := next_elem+1 to A.length do
4 if A[place] < A[smallest] then
5 smallest := place
6 A[next_elem] ⇄ A[smallest]

(move the border between parts)
(possible location of smallest = first elem)

(if an even smaller elem is found...)
(...take not of its location)
(swap the smallest to the beginning)

Mergesort(A, left, right)
1 if left < right then (nothing to be done in trivial case)
2 mid := (⌊ left + right) / 2⌋ (calculate midpoint)
3 Mergesort(A, left, mid) (sort left half)
4 Mergesort(A, mid+1, right) (sort right half)
5 Merge(A, left, mid, right) (merge sorted halfs together)

Insertion-Sort(A)
1 for next_elem := 2 to A.length do
2 key := A[next_elem]
3 place := next_elem − 1
4 while place > 0 and A[place] > key do
5 A[place + 1] := A[place]
6 place := place − 1
7 A[place + 1] := key

(move the border between parts)
(the next element to be handled)

(find the right place for next element)
(make space for the element)

(put the element into the correct place)

Tuning STL algorithms and
containers

COMP.CS.300 Tietorakenteet ja algoritmit 1

Matti Rintala (matti.rintala@tuni.fi)

Tuning STL

•Many algorithms takes as a
parameter a lambda/function,
which the algorithm uses (=calls)

•For example sort & comparing
elems, find_if what kind of elem to
look for...

•The behaviour of some containers
can also be tuned

•For example map and order of
search keys

Quicksort(A, left, right)
1 if left < right then (nothing to be done in trivial case)
2 pivot := Partition(A, left, right) (partition to small & large, pivot marks split)
3 Quicksort(A, left, pivot−1) (sort smaller than pivot)
4 Quicksort(A, pivot+1, right) (sort larger than pivot)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

