
Invalidation in containers

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)



Invalidation

• Invalidated iterator no longer refers to a 
(correct) position after insert/remove

• Do not use an invalidated iterator 
(assigning a new position is ok)

• If used, result is undefined 
(crash/messed up data/???)



Invalidation

vector<int> v={ 1,2,3,4};
auto i = v.begin();
auto j = i+1; // next after i
v.erase(i);
*j = 3; // !!! j invalidated!



Invalidation and choosing a 
container

•Different containers have different rules 
for invalidation

•Another selection criteria in addition to 
performance (often a compromise)

•vector and deque: rules complicated
•unordered_map/set: safe for erasing, 
insertion invalidates

•map/set and (forward_)list almost safe



Invalidation and choosing a 
container

Container After 
insertion

After 
erase

Note

Invalidated! - Capacity changed

vector Ok Ok * Before insertion 
position

Invalidated! Invalidated! After insertion 
position

deque Invalidated! Ok * Insert/erase of 1./last

Invalidated! Invalidated! Insert/erase of rest

(forward_)list Ok Ok *

(multi)map/set Ok Ok *

unordered_(multi)
map/set

Invalidated! - Rehash occurred

Ok Ok *



How to notice invalidation

•Careful planning!
•Some compilers have STL-debug features
Gcc: -D_GLIBCXX_DEBUG
-D_GLIBCXX_DEBUG_PEDANTIC

•Program crashes: debugger tells where?
•Program gets messed up: debugger/printouts



Invalidation, pointers and 
indices

•Any indicator of position may 
get invalidated!

•Pointer to element: element 
gets moved in memory

•Index to element: Insertion or 
removal before element

•cppreference.com has a more 
comprihensive table


	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

