
C++ Standard Template
Library (STL)

COMP.CS.300 Data structures and algoritms 1

Matti Rintala (matti.rintala@tuni.fi)

Provided library vs own
implementation

•Self-implemented data structure/algorithm:
– How operations are implemented?

•Ready-made library (STL):
– Implementation hidden
– How to use operations (interfaces)
– How to choose suitable data structure/algorithm?
– How to choose an efficient data structure/algorithm?
– How to combine provided data structures/algorithms?
– How to tune/customize provided functionality?

Parts of STL

Containers
Generic

algorithms

Iterators

Parts of STL

Basic operations:
•[] at
•push_back
•erase
•size
•clear
•...

Parts of STL

Generic algorithms:
•for_each
•find
•binary_search
•set_symmetric_
difference

•transform_reduce
•...

Parts of STL

Basic operations:
•[] at
•push_back
•erase
•size
•clear
•...

Containers
Generic

algorithms

Iterators

Generic algorithms:
•for_each
•find
•binary_search
•set_symmetric_
difference

•transform_reduce
•...

STL and asymptotic
performance

•STL provides asymptotic performance guarantees
– Often O-notation used ("not slower than")
– Sometimes also average performance or Θ-notation

STL and asymptotic
performance

•STL provides asymptotic performance guarantees
– Often O-notation used ("not slower than")
– Sometimes also average performance or Θ-notation

•But what is "n"? Depends on the situation:
– The number of elements
– The size of a subset of elements
– Sometimes several variables (O(m*n))

STL containers

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

STL containers

•Sequences
– User decides the order of elements
– Elements are found based on their position

•Associative containers
– The container decided the element order

(can also be undefined)
– Elements are used based on a search key

•(Container adaptors stack, queue, priority_queue)

STL sequences

•vector, deque, list
•(array, forward_list)
•User decided the element order
•Elements found by indexing (position number)
or iterating elements in order

•Insertion/removal at given position
(iterator)

STL associative
containers

•Ordered map, set
– Order based on the search key

•unordered_map/_set
– Order undefined,

can change at any time!

• Many elements per search key:
(unordered_)multimap/set

•Removal at given position
(iterator) (found by searching)

STL associative
containers

key = data?

many
elems/key?

order based
on key?

N: ...map Y: ...set

N
Y: ...multi...

YN: unordered_...

STL associative
containers

•Ordered map, set
– Order based on the search key

•unordered_map/_set
– Order undefined,

can change at any time!

• Many elements per search key:
(unordered_)multimap/set

•Removal at given position
(iterator) (found by searching)

key = data?

many
elems/key?

order based
on key?

N: ...map Y: ...set

N
Y: ...multi...

YN: unordered_...

STL container performance

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

(Asymptotic) container
performance

•Usually asymptotic performance specified
(often upper limit O)

•Many containers similar in interface, but
performance differs.

• If some operation would be "inefficient", it
may be omitted from container

•Choosing a container:
– Category (sequence/associative)
– Frequent operations should be fast
– (Invalidation, other smaller differences)

Choosing container based
on performance

Container General
add/remove

Add to
start/end

Remove from
start/end

Search
(position)

Search
(value/key)

Largest/
smallest etc.

vector O(n) - / O(1)* - / O(1)* O(1) (O(n)) (O(n))

deque O(n) O(1) / O(1) O(1) / O(1) O(1) (O(n)) (O(n))

list O(1) O(1) / O(1) O(1) / O(1) (O(n)) (O(n)) (O(n))

(array) - - - O(1) (O(n)) (O(n))

(forward_list) O(1) - / O(n)* - / O(n)* O(n) (O(n)) (O(n))

unordered_
map/set

O(n)
≈ Θ(1)

- - - O(n)
≈ Θ(1)

(O(n))

map/set O(log n) - - (O(n)) O(log n) O(1)

(stack) - - / O(1) - / O(1) - - -

(queue) - O(1) / - - / O(1) - - -

(priority_queue) O(log n) - - - - O(1)

STL iterators

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

Idea of iterators

•A bookmark into a container
•Iterating through a container
•A sub-range: 2 iterators
(C++20 also: ranges) 10 4 2 6 9 3 14 8 5

i1 i2b e

Role of iterators in STL

•Containers
– begin(), end()
– Inserting into given position
– Erasing an element (or range) at given position
– Operation results in a position (or range)

•Algorithms
– Expressing position and container
– Expressing operation range
– Operation results in a position (or range)

•Reverse iterators rbegin(), rend()

Iterator performance &
iterator categories

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

Iterator performance and
categories

• Iterator operations (++, *, ...)
constant time O(1)

•Depends on container what
operations iterators support

• Iterator categories: what
operations are provided

•Algorithms may require
iterators of certain category

Iterator performance and
categories

Input iterator
*(read), ++, ==,
!=,=, ->

Output iterator
*(write), ++, ==,
!=, =, ->

Forward iterator
* (read & write)

Bidirectional iterator
--

Random access
iterator
+=, -=, +, -, <, >, <=,
=>, []

forward_list

list

(unordered_)
(multi)
map/set

vector
deque
array

Iterator performance and
categories

• Iterator operations (++, *, ...)
constant time O(1)

•Depends on container what
operations iterators support

• Iterator categories: what
operations are provided

•Algorithms may require
iterators of certain category

Input iterator
*(read), ++, ==,
!=,=, ->

Output iterator
*(write), ++, ==,
!=, =, ->

Forward iterator
* (read & write)

Bidirectional iterator
--

Random access
iterator
+=, -=, +, -, <, >, <=,
=>, []

forward_list

list

(unordered_)
(multi)
map/set

vector
deque
array

Invalidation in containers

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

Invalidation

• Invalidated iterator no longer refers to a
(correct) position after insert/remove

• Do not use an invalidated iterator
(assigning a new position is ok)

• If used, result is undefined
(crash/messed up data/???)

Invalidation

vector<int> v={ 1,2,3,4};
auto i = v.begin();
auto j = i+1; // next after i
v.erase(i);
*j = 3; // !!! j invalidated!

Invalidation and choosing a
container

•Different containers have different rules
for invalidation

•Another selection criteria in addition to
performance (often a compromise)

•vector and deque: rules complicated
•unordered_map/set: safe for erasing,
insertion invalidates

•map/set and (forward_)list almost safe

Invalidation and choosing a
container

Container After
insertion

After
erase

Note

Invalidated! - Capacity changed

vector Ok Ok * Before insertion
position

Invalidated! Invalidated! After insertion
position

deque Invalidated! Ok * Insert/erase of 1./last

Invalidated! Invalidated! Insert/erase of rest

(forward_)list Ok Ok *

(multi)map/set Ok Ok *

unordered_(multi)
map/set

Invalidated! - Rehash occurred

Ok Ok *

How to notice invalidation

•Careful planning!
•Some compilers have STL-debug features
Gcc: -D_GLIBCXX_DEBUG
-D_GLIBCXX_DEBUG_PEDANTIC

•Program crashes: debugger tells where?
•Program gets messed up: debugger/printouts

Invalidation, pointers and
indices

•Any indicator of position may
get invalidated!

•Pointer to element: element
gets moved in memory

•Index to element: Insertion or
removal before element

•cppreference.com has a more
comprihensive table

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

