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Provided library vs own 
implementation

•Self-implemented data structure/algorithm:
– How operations are implemented?

•Ready-made library (STL):
– Implementation hidden
– How to use operations (interfaces)
– How to choose suitable data structure/algorithm?
– How to choose an efficient data structure/algorithm?
– How to combine provided data structures/algorithms?
– How to tune/customize provided functionality?



Parts of STL

Containers
Generic

algorithms

Iterators



Parts of STL

Basic operations:
•[] at
•push_back
•erase
•size
•clear
•...



Parts of STL

Generic algorithms:
•for_each
•find
•binary_search
•set_symmetric_
difference

•transform_reduce
•...
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STL and asymptotic 
performance

•STL provides asymptotic performance guarantees
– Often O-notation used ("not slower than")
– Sometimes also average performance or Θ-notation



STL and asymptotic 
performance

•STL provides asymptotic performance guarantees
– Often O-notation used ("not slower than")
– Sometimes also average performance or Θ-notation

•But what is "n"? Depends on the situation:
– The number of elements
– The size of a subset of elements
– Sometimes several variables (O(m*n))



STL containers
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STL containers

•Sequences
– User decides the order of elements
– Elements are found based on their position

•Associative containers
– The container decided the element order

(can also be undefined)
– Elements are used based on a search key

•(Container adaptors stack, queue, priority_queue)



STL sequences

•vector, deque, list
•(array, forward_list)
•User decided the element order
•Elements found by indexing (position number)
or iterating elements in order

•Insertion/removal at given position
(iterator)



STL associative 
containers

•Ordered map, set
– Order based on the search key

•unordered_map/_set
– Order undefined,

can change at any time!

• Many elements per search key:
(unordered_)multimap/set

•Removal at given position
(iterator) (found by searching)



STL associative 
containers

key = data?

many
elems/key?

order based
on key?

N: ...map Y: ...set

N
Y: ...multi...

YN: unordered_...
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STL container performance
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(Asymptotic) container 
performance

•Usually asymptotic performance specified
(often upper limit O)

•Many containers similar in interface, but
performance differs.

• If some operation would be "inefficient", it
may be omitted from container

•Choosing a container:
– Category (sequence/associative)
– Frequent operations should be fast
– (Invalidation, other smaller differences)



Choosing container based 
on performance

Container General 
add/remove

Add to 
start/end

Remove from 
start/end

Search 
(position)

Search 
(value/key)

Largest/
smallest etc.

vector O(n) - / O(1)* - / O(1)* O(1) ( O(n) ) ( O(n) )

deque O(n) O(1) / O(1) O(1) / O(1) O(1) ( O(n) ) ( O(n) )

list O(1) O(1) / O(1) O(1) / O(1)  ( O(n) ) ( O(n) ) ( O(n) )

(array) - - - O(1) ( O(n) ) ( O(n) )

(forward_list) O(1) - / O(n)* - / O(n)* O(n) ( O(n) ) ( O(n) )

unordered_
map/set

O(n)
≈ Θ(1)

- - - O(n)
≈ Θ(1)

( O(n) )

map/set O(log n) - - ( O(n) ) O(log n) O(1)

(stack) - - / O(1) - / O(1) - - -

(queue) - O(1) / - - / O(1) - - -

(priority_queue) O(log n) - - - - O(1)



STL iterators
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Idea of iterators

•A bookmark into a container
•Iterating through a container
•A sub-range: 2 iterators
(C++20 also: ranges) 10 4 2 6 9 3 14 8 5

i1 i2b e



Role of iterators in STL

•Containers
– begin(), end()
– Inserting into given position
– Erasing an element (or range) at given position
– Operation results in a position (or range)

•Algorithms
– Expressing position and container
– Expressing operation range
– Operation results in a position (or range)

•Reverse iterators rbegin(), rend()



Iterator performance & 
iterator categories
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Iterator performance and 
categories

• Iterator operations (++, *, ...) 
constant time O(1)

•Depends on container what 
operations iterators support

• Iterator categories: what 
operations are provided

•Algorithms may require 
iterators of certain category



Iterator performance and 
categories

Input iterator
*(read), ++, ==,
!=,=, ->

Output iterator
*(write), ++, ==,
!=, =, ->

Forward iterator
* (read & write)

Bidirectional iterator
--

Random access 
iterator
+=, -=, +, -, <, >, <=, 
=>, []

forward_list

list

(unordered_)
(multi)
map/set

vector
deque
array
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Invalidation in containers
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Invalidation

• Invalidated iterator no longer refers to a 
(correct) position after insert/remove

• Do not use an invalidated iterator 
(assigning a new position is ok)

• If used, result is undefined 
(crash/messed up data/???)



Invalidation

vector<int> v={ 1,2,3,4};
auto i = v.begin();
auto j = i+1; // next after i
v.erase(i);
*j = 3; // !!! j invalidated!



Invalidation and choosing a 
container

•Different containers have different rules 
for invalidation

•Another selection criteria in addition to 
performance (often a compromise)

•vector and deque: rules complicated
•unordered_map/set: safe for erasing, 
insertion invalidates

•map/set and (forward_)list almost safe



Invalidation and choosing a 
container

Container After 
insertion

After 
erase

Note

Invalidated! - Capacity changed

vector Ok Ok * Before insertion 
position

Invalidated! Invalidated! After insertion 
position

deque Invalidated! Ok * Insert/erase of 1./last

Invalidated! Invalidated! Insert/erase of rest

(forward_)list Ok Ok *

(multi)map/set Ok Ok *

unordered_(multi)
map/set

Invalidated! - Rehash occurred

Ok Ok *



How to notice invalidation

•Careful planning!
•Some compilers have STL-debug features
Gcc: -D_GLIBCXX_DEBUG
-D_GLIBCXX_DEBUG_PEDANTIC

•Program crashes: debugger tells where?
•Program gets messed up: debugger/printouts



Invalidation, pointers and 
indices

•Any indicator of position may 
get invalidated!

•Pointer to element: element 
gets moved in memory

•Index to element: Insertion or 
removal before element

•cppreference.com has a more 
comprihensive table
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