
Tree data structures and tree traversals

1. Background
2. Data structure
3. Traversals

1. Background

Why does one need to know how to form and use a tree data structure?

- STL does not have 'tree' in its containers.

- A tree is useful for storing data that is hierarchic.

University of Sciences and Applied Sciences

Faculty of
Engineering

Faculty of
Science

Civil Mechanical ITChemical Chemistry Biology Physics Geology

Tree parts: nodes, edges, root, children, parents, leaves (external node), internal node, subtree



Note:

1. All trees are assumed to be rooted trees.

2. Children and subtrees are ordered from left to right.  Hence the leftmost child is the first child
and the rightmost child is the last child.

2. Data structure

Usually in a tree the nodes hold the information.

We need a device (a data type) to hold node data.  We will use a Node.

In pseudocode we will use the following for general tree:

• Node.key = the key of Node

• Node.parent = pointer to parent of Node or NIL if root

• Node.children = all children of Node

• Node.children[i] = pointer to i'th child of Node, or NIL if child does not exist

• The root node is root.

In pseudocode we will use the following for binary tree:

• Node.key = the key of Node

• Node.parent = pointer to parent of Node or NIL if root

• Node.left = pointer to left child or NIL if child does not exist

• Node.right = pointer lto right child or NIL if child does not exist.

• The root node is root.



NOTE

• individual node can be accessed by its key

In C++ for general tree:

In C++ for binary tree:



NOTES

- If node does not exist, then pointer value is nullptr.

- Individual node is accessed by its key.

- If a node can have many children, then a vector container is probably inefficient. Some
other container should be used, e.g. underordered_set.

- All tree nodes should be stored in a container.  For example:

3. Traversals

Q: What is a traversal?

A: When all of the elements of a data structure are visited.

Single dimensional array traversal:

We consider three tree traversals: preorder traversal, postorder traversal and inorder traversal.

These three differ in the order in which the nodes are visited.



Preorder traversal

First visit the parent and then visit its subtrees in order.

Example

Compute

PRETRAVERSAL(         )

Assume: operation in line 4 is outputting node key to user



recursion
level line computation

PRETRAVERSAL(          )

PRETRAVERSAL(          )

PRETRAVERSAL(          )

order of all output:  8, 9, 4, 5, 3, 7, 2, 6, 0, 1

Postorder traversal

First visit the subtrees in order and then visit the parent.



Example

Compute

POSTTRAVERSAL(         )

recursion
level line computation

POSTTRAVERSAL(          )

POSTTRAVERSAL(          )

POSTTRAVERSAL(          )

order of all output:  4, 5, 9, 3, 7, 0, 6, 1, 2, 8



Inorder traversal

This order is only valid for binary trees.

First the left subtree is visited, then the parent is visited, and finally the right subtree is visited.

Example

Compute

INTRAVERSAL(         )

recursion
level line computation

INTRAVERSAL(         )

INTRAVERSAL(         )

INTRAVERSAL(         )



INTRAVERSAL(         )

NOTES

- PRETRAVERSAL, POSTTRAVERSAL and INTRAVERSAL are all recursive.

- Preorder traversal is useful when some information about the parent should be available or
relayed to the children.

- Postorder traversal is useful when some information about the children should be available
or relayed to the parent.

- Inorder traversal is useful for sorting all nodes by theirs keys when using a binary search
tree.

order of all output:  4, 9, 3,  5, 7, 8, 0, 6, 2, 1



Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron


