Algorithm efficiency: introduction

1. What is algorithm efficiency?
2. Pseudocode analysis

1. What is algorithm efficiency?

Two quantities of interest:
* How much time does the algorithm require?

* How much computer memory does the algorithm require?

Focus on time.

Q: For some given computational task what do we really want?

A: We want to know beforehand how much time the task will take.

Software/hardware factors which will affect the time:
* a particular algorithm for doing the task
* a particular programming language

* a particular implementation of the algorithm in the programming language with error
checks, data types, objects, etc.

* particular set of input data
* a particular compiler with all compiler options
* a particular computer with a particular CPU, cache memory, clock frequency, etc.

* a particular environment: what else is computer doing?

Too difficult to predict beforehand.

We can measure the computational time afterwards, once all factors have been fixed.
Does this help?

Not very often. Suppose one or more factors change.

Q: What can we do?

A: Analyze pseudocode.

Pseudocode ignores most of the above factors. What factors are left?
* a particular algorithm

* a particular set of input data

2. Pseudocode analysis

Q: What is pseudocode analysis?

A: counting the number of 'simple operations’ and seeing how this depends on the 'size’ of
the input data

Q: What is a 'simple operation’?

A: Any operation that does not depend on size of input data.

Simple operations:

* arithmetic operations: +, -, *, /

« if-statement, else-statement

* one iteration of for or while or for-each
* variable assignment

* accessing a single item in memory

* a single call to a procedure (NOT the execution of the procedure itself)

RAM-model of computer: all simple operations take the same time

Example
Pseudocode
1 INSERTSORT(4)
2 input: number array A output: sorted array A
3 /* The numbers in input A[l.n] may be in any order. On output the
4 numbers in A are sorted from smallest to largest. =/
5 for j from 2 to A.length
] ﬁm,r@ =
v while (k > nud@
8 4[1._4[,1.—1 k=k—1
9 end
10 Alk] = key
11 end

What is the ’size’ of input data?

« if input is array, then usually length of array B A s B IR h

« if input polynomial, then usually degree of polynomial o‘o P GLX ¥k Cln .)ch
« if input is a number, then often the number of bits needed to represent number 1614 g 761

« if input is binary tree, then sometimes the height of the tree, sometimes the number

of nodes (vertices)

Goal of pseudocode analysis is f(n)

f(n) = total count of simple operations for input data of size n

Asymptotic analysis: only consider those parts f(n) that grows the fastest as n increases

Example
Pseudocode
1 INSERTSORT(A)
2 input: number array 4 output: sorted array A
3 /* The numbers in input A[l.n] may be in any order. On output the
4 numbers in A arc sorted from smallest to largest. =/
5 for j from 2 to A.length
6 key = A[j], k=]
7 while k> 2 and A[k —1] > key
8 A[L-]@ kEf -1
9 end
10 _—li#: = key

11 end

Count of times line 8 executed in INSERTSORT

i most number of times
line 8 executed

C (vea)
2 y|
n-1
Z r = n_(n_ﬁ
r<i 2
gs(h): num\ag(0;’1 X)mpl-& D\ozruhms hze&ed '|'o exac,ql'c
bne " woest Cose
poy 5h(n-1)
P
. 5. 5y Ho)
P &

Q: Can pseudocode analysis help with our original task of predicting how long some com-
putation task will take?

A: No.

Q: What can we do with pseudocode analysis?

A: Compare alternative algorithms.

fp (n]

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilla. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

