Balanced binary search trees

1. Background and motivation
2. Rotations

3. AVL trees

4. Red-black trees

1. Background and motivation

Two numbers associated with any binary tree:

n = number of nodes in binarv tree

h = height of binary tree

Always true: 2"l _15n or b2 [loggind-1)—17 > |logs(n)]

Equality is true for perfect binary tree: all interior nodes have 2 children and all leaves are
at same depth.

Example

a perfect binary tree with

h=2 andn=7

Q: What is the runtime efficiency of a search operation on a BST?
A: O(h)

Example

best case: h is as small as possible worst case: h is as large as possible

&)
(19

Q: For a given n, what is the smallest that i can be?
A: h > |logy(n)|

Q: For a given n, what is the largest that i can be?
A:h<(n-1)

Consequence: search is O(n) (same as for unsorted array)
Q: Are we interested only in search?

A: No. But operations such as insert, delete, max and min are extensions or modifications

ol search.

Conclusions
- to avoid O(n) runtime efficiency, we want BSTs to be balanced

- a mechanism is needed to help balance an unbalanced BST

2. Rotations

Left rotation

X_Y left rotation

BST property preserved:

both at start and finish : T\.key < X.key < Ts.key < Y.key < T3.key

Consider heights

h(T:) = height of subtree T;, i = 1,2,3
hyare = height of subtree rooted at X = 1+ max(h(T}), 1 + max(h(T3), h(T3)))

Nginish = height of subtree rooted at Y = 14+ max(h(T3), 1 + max(h(Ty), h(T3)))

For decrease in total height we need hpinisn < Rasare

max(h(T3), 1 + max(h(T1), h(73))) < max(h(T1), 1 + max(h(T2), h(T3)))
= h(T3) > h(T3) and h(T3) = h(T1)

Example

Height was reduced after rotation.

Q: Why would we want to perform rotations?

A: To decrease the height of the BST and hence improve performance.

Right rotation

Finish

Y-X right rotation

Right-left double rotation

Intermediate

Z-Yright rotation

Left-right double rotation

... left to viewer

3. AVL trees

Q: What is a height-balanced (BST)?

A: In a height-balanced BST, each node x has the following property:

The difference between the heights of the two subtrees of = is at most 1.

An AVL-tree is a BST which is height-balanced. When a BST becomes unbalanced, rotations
are performed to restore the height-balance property.

When computing an AVL-tree node attributes:

e Node.key — the key of a node

e Node.parent — pointer to parent of Node or NIL if root

o Node.left = pointer left child for binary tree or NIL if child does not exist

e Node.right — pointer right child for binary tree or NIL if child does not exist

o Node.hdif f = the difference in the heights of the left and right subtrees

i
< 0 when the height of the left subtree is greater

Node.dif f = {0 when the two subtrees have equal height

>0 when the height of the right subtree is greater

Example

Node.diff in red

Typical code when forming AVL trees:

[[SN —

e

&n

b |

if z.hdiff =2 then
perform left rotation with = and z.right
else
if z.hdif f =2 then
perform right rotation with 2 and zleft
end
end
zhdiff=0

Detailed example from Wikipedia:

By Bruno Schalch - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?
curid=64250599

For BST formed using AVL techniques:

h < log,(n+2), where¢ = ; r 162

Conclusion: search (and other operations) in AVL are O(log2(n))

4. Red-black trees

A red-black BST has the following properites:
property 1 Each node is colored either red or black.

property 2 A node is red does not have a red child.
property 3 For each node x, all paths from x to any leaf contain the same number of black

nodes.

property 4 The root is colored black.

Example

Is the BST a red-black tree?

(L) (&))
O
@ @ @ Yes.

No. It does not have property 3.

(W) (%)

No. It does not have property 2.

For each node x, we get the following from the properties:

e in each path from x to a leaf, at most every second node is red
o the length of the longest path from x to a leaf is at most twice the length of the shortest
path (balancing of some kind)
Red-black trees make use of two mechanisms fro maintaining properties:
e recoloring

e rotations

Example

Add a node whose key is 6
to the following red-black tree

Stage 1
search for correct location and
try to add red node

Stage 2: recoloring

Stage 3: rotation

Stage 4: recoloring root

For a red-black BST:

h < 2logy(n + 2)

Conclusion: search (and other operations) in red-black tree are O(log2(n))

Visualization of data structures:

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Tama teos on lisensoitu Creative Commons Nimeda-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

