Binary search trees

1. Background
2. Procedures
3. STL containers

1. Background

Terminology related to binary trees:
e left child, right child
e left subtree, right subtree
e |eaf
e height

In a binary search tree, each node x has a key: x.key (common interpretation: x.key is an
integer)

QQ: What is a binary search tree (BST)?

A: A binary tree is a binary search tree, when each node x has the following property:

When y is any node in the left subtree of x, then y.key < x.key. When z is any

node in the right subtree of x, then z.key > x.key.

Example

s the tree a BST or not?
(L) @)) (3) iit)
5 W N\ W
®» ©® ® @
7e

no) 16728

Q: For searching purposes, what makes a BST efficient or inefficent?
A: A BST is efficient when it is balanced.

Q: What is a height-balanced BST?

A: In a height-balanced BST. each node = has the following property:

The difference between the heights of the two subtrees of x is at most 1.

Example

Is the BST height-balanced or not?

(L)
(2) yes

Other kinds of balancing:

For each node x, the difference between the number of nodes in its left and right

subtrees of r is at most 1.

2. Procedures

There are numerous operations that can be done on a BST:
e gearch: scarch for a given key in an existing BST
e insert: insert a new node with a given key into an existing BST

e delete: remove a new node having a given key from an existing BST, if such a node

exists
e min: obtain the node with the smallest key from an existing BST
e max: obtain the node with the largest key from an existing BST

s predecessor: given a node x, obtain the node having the largest key that is less than
x.key

e successor: given a node x, obtain the node having the smallest key that is greater

than x.key

e inorder-traversal: perform a traversal of all the nodes in a BST in ascending order
of the keys

For psendocode we will use the following for binary tree:
o Node.key = the keyv of a node
o Node.parent = pointer to parent of Node or NIL if root
o Nodeleft = pointer left child for binary tree or NIL if child does not exist

o Node.right = pointer right child for binary tree or NIL if child does not exist

Search

1 B-TREE-SEARCH(z. k)
2 given BST whose root is 2, returns the node whose key is Lk, when
3 siuch a node exists , otherwise returns NIL
4 while @ # NIL and z.key # Lk do
5 if k< xkey then
6 r=zlefi
7 else
8 x = x.right
9 end
10 end
11 return x
Example

B-TREE-SEARCH((), 19)

=

5

S o= 3 S —

B-TREE-MIN(z)

given BST whose root is z,

while x.left £ NIL do
r=1rleft

end

return

returns the node having smallest key

1 B-TREE-MAX(x)

2 given BST whose root is z, returns the node having largest key
3 while z.right # NIL do

4 T = r.right

5 end

6 return o
Example

B-TREE-MAX(@)

1 B—TREE-INSERT (root , x)

2 insert into given BST new node x

3 parent = NIL

1 node = root

5 /% find the correct location for the new node =/
6 while node # NIL do

7 parent = node

' if x.key < node.key then

9 node = node.le ft

10 else

11 node = node.right

12 end

13 end

14 r.parent = parent

15 /# If the new node has no parent. it is the root. =/
16 if z.parent == NIL then

17 root = x

18 else

19

20 /# Is the new node is a left child or a right child? =/
21 if ax.key < parent.key then

22 parentleft = x

23 else

24 parent.right = x

25 end

26 end

27 iEF’ff =NIL i l!?t}hf — NIL

Example

INSERT(() |) () ~

sSuccessor

1 B-TREE-SUCCESSOR({ =)
2 given a node x in a BST, locates the node whose key is the
3 smallest that is greater than z.key
4 if z.right 2 NIL then
5 return B-TREE-MIN({z.right)
] end
T parent = x.parent
8 while parent # NIL and x # parentleft do
9 x = parent , parent = x.parent
10 end
11 return parent
Predecessor
1 B-TREE-PREDECESSOR ()
2 given a node » in a BST, locates the node whose key is the
3 largest that is less than z.key
4 if zleft #NIL then
5 return B-TREE-MAX(z.left)
6 end
T parent = x.parent
8 while parent # NIL and x # parent.right do
9 r = parent , parent = x.parent
10 end
11 return parent
Example

SUCCESSOR()

PREDECCESSOR((%))

Inorder traversal

INTRAVERSAL (node)

input node tree node

if node+# NIL then
INTRAVERSAL { node.le ft)
> perform some operation using node
INTRAVERSAL (node.right)

end

=1 Th O e L0 B

order of parts: left subtree, root, right subtree

Example

output list: 3, 8, 10, 14, 15, 16, 17, 18, 20

The delete procedure is tricky and ill not be presented.

3. STL containers

In C++ map and set are balanced binary search trees.

From https://en.cppreference.com/w/cpp/Zcontainer/map

std::Map
Defined in header «<map=

template=
class Key,
class T, @
class Compare = std::less<Key>,
class Allocator = std::allocator=std::pair=const Key, T> >
> class map;

namespace pmr {
template =class Key, class T, class Compare = std::less<Key=>
using map = std::map<Key, T, Compare, 2) (since C++17)
std::pmr::polymorphic_allocator=std::pair=const Key,T=>>

}

std: :map is a sorted associative container that contains key-value pairs with unigue keys. Keys are sorted by using the
comparison function Compare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually
implemented as red-black treesi®.

Modifiers
clear clears the conten_ts
(public member function)
. inserts elements or nodes (since C++17)
insert

(public member function)

inserts an element or assigns to the current element if the key already exists
(public member function)

constructs element in-place

(public member function)

constructs elements in-place using a hint

(public member function)

inserts in-place if the key does not exist, does nothing if the key exists
(public member function)

erases elements

(public member function)

swaps the contents

(public member function)

extracts nodes from the container

(public member function)

splices nodes from another container
(public member function)

insert_or_assign(c++17)
emplace (C++11)
emplace_hintic++11)

try emplace (c++17)
erase

swap

extract(c++17m)

merge (C++17)

Lookup

count

returns the number of elements matching specific key
(public member function)

Find

finds element with specific key
(public member function)

contains (C++20)

checks if the container contains element with specific key
{public member function)

equal_range

returns range of elements matching a specific key
({public member function)

returns an iterator to the first element not fess than the given key
(public member function)

lower_bound

il

returns an iterator to the first element greater than the given key
{public member function)

Tama teos on lisensoitu Creative Commons Nimeda-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

