

2. Procedures							
			OTE.				
There are numerous opera	tions that can be	done on a B	ST:				
• search: search for a	given key in an ϵ	existing BST					
• insert: insert a new	node with a give	n <i>key</i> into an	existing !	BST			
• delete: remove a ne exists	ew node having a	given key fro	m an exis	sting BST	Γ, if su	ch a no	de
• min: obtain the noo	le with the smalle	est key from a	n existing	gBST			
• max: obtain the noc	de with the larges	st key from a	n existing	BST			
• predecessor : given $x.key$	a node x , obtain	the node hav	ing the la	rgest key	that is	less th	an
• successor: given a than x.key	node x , obtain the	he node havis	ng the sm	allest key	y that	is great	ter
than $x.key$ • inorder-traversal:							
than $x.key$							
than $x.key$ • inorder-traversal:	perform a travers	sal of all the					
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use the	perform a travers	sal of all the					
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use to $Node.key = the key of $	perform a travers the following for bine a node	sal of all the	nodes in a				
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use the	perform a travers the following for bine a node	sal of all the	nodes in a				
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use to $Node.key = the key of $	perform a travers the following for bir a node to parent of Node	sal of all the	nodes in a	a BST in			
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use to the sey of the sey	perform a travers the following for bir a node to parent of Node ft child for binary	sal of all the hary tree; or NIL if root	nodes in a	a BST in	ascend		
• inorder-traversal: of the keys For pseudocode we will use to • Node.key = the key of • Node.parent = pointer	perform a travers the following for bir a node to parent of Node ft child for binary	sal of all the hary tree; or NIL if root	nodes in a	a BST in	ascend		
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use to the sey of the sey	perform a travers the following for bir a node to parent of Node ft child for binary	sal of all the hary tree; or NIL if root	nodes in a	a BST in	ascend		
than $x.key$ • inorder-traversal: of the keys For pseudocode we will use to the sey of the sey	perform a travers the following for bir a node to parent of Node ft child for binary	sal of all the hary tree; or NIL if root	nodes in a	a BST in	ascend		

The delete pro	cedure is tricky and ill not be presented.
3. STL contai	ners
In C++ map ar	d set are balanced binary search trees.
From https://	/en.cppreference.com/w/cpp/container/map
std::map	
Defined in header <map< td=""><td></td></map<>	
template< class Key, class T, class Compare class Allocat > class map;	= std::less <key>, or = std::allocator<std::pair<const key,="" t=""> ></std::pair<const></key>
namespace pmr {	
<pre>using map = s } std::map is a sorted a comparison function C</pre>	ss Key, class T, class Compare = std::less <key>> td::map<key, compare,<="" t,="" th=""></key,></key>
template <clausing a="" a<="" is="" map="s" sorted="" std::map="" th="" }=""><th>td::map<key, compare,="" key,t="" std::pmr::polymorphic_allocator<std::pair<const="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually</key,></th></clausing>	td::map <key, compare,="" key,t="" std::pmr::polymorphic_allocator<std::pair<const="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually</key,>
template <clausing a="" as="" c="" comparison="" function="" implemented="" is="" map="s" red-b<="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,="" key,t="" std::pmr::polymorphic_allocator<std::pair<const="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually</key,></td></clausing>	td::map <key, compare,="" key,t="" std::pmr::polymorphic_allocator<std::pair<const="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually</key,>
template <clausing a="" as="" c="" comparison="" function="" implemented="" is="" map="s" modifiers<="" red-b="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees. clears the contents</key,></td></clausing>	td::map <key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees. clears the contents</key,>
template <clausing a="" as="" c="" comparison="" function="" implemented="" is="" map="s" red-b<="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees.</key,></td></clausing>	td::map <key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees.</key,>
template <clausing a="" as="" c="" clear<="" comparison="" function="" implemented="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees the contents (public member function) inserts elements or nodes (since C++17) (public member function) inserts an element or assigns to the current element if the key already exists.</key,></td></clausing>	td::map <key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the ompare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees the contents (public member function) inserts elements or nodes (since C++17) (public member function) inserts an element or assigns to the current element if the key already exists.</key,>
template <clausing a="" as="" c="" clear="" comparison="" function="" implemented="" insert<="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,<="" t,="" td=""></key,></td></clausing>	td::map <key, compare,<="" t,="" td=""></key,>
template <clausing a="" as="" c="" clear="" comparison="" function="" implemented="" insert="" insert_or_assign(c++1)<="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,<="" t,="" td=""></key,></td></clausing>	td::map <key, compare,<="" t,="" td=""></key,>
template <clausing a="" as="" c="" clear="" comparison="" emplace(c++11)<="" function="" implemented="" insert="" insert_or_assign(c++1)="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,<="" t,="" td=""></key,></td></clausing>	td::map <key, compare,<="" t,="" td=""></key,>
template <clausing a="" as="" c="" clear="" comparison="" emplace(c++11)<="" function="" implemented="" insert="" insert_or_assign(c++1)="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" }=""><td>td::map<key, compare,<="" t,="" td=""></key,></td></clausing>	td::map <key, compare,<="" t,="" td=""></key,>
template <clausing a="" as="" c="" clear="" comparison="" emplace(c++11)="" emplace_hint(c++11)="" function="" implemented="" insert="" insert_or_assign(c++1)="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" try_emplace(c++17)<="" }=""><td>td::map<key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the part e. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees to the contents (public member function) inserts elements or nodes (since C++17) (public member function) inserts an element or assigns to the current element if the key already exists (public member function) constructs element in-place (public member function) constructs elements in-place using a hint (public member function) inserts in-place if the key does not exist, does nothing if the key exists (public member function) erases elements</key,></td></clausing>	td::map <key, compare,="" key,="" std::pmr::polymorphic_allocator<std::pair<const="" t="" t,="">>> ssociative container that contains key-value pairs with unique keys. Keys are sorted by using the part e. Search, removal, and insertion operations have logarithmic complexity. Maps are usually ack trees to the contents (public member function) inserts elements or nodes (since C++17) (public member function) inserts an element or assigns to the current element if the key already exists (public member function) constructs element in-place (public member function) constructs elements in-place using a hint (public member function) inserts in-place if the key does not exist, does nothing if the key exists (public member function) erases elements</key,>
template <clausing a="" as="" c="" clear="" comparison="" emplace(c++11)="" emplace_hint(c++11)="" function="" implemented="" insert="" insert_or_assign(c++1)="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" td="" try_emplace(c++17)<="" }=""><td>td::map<key, compare,<="" t,="" td=""></key,></td></clausing>	td::map <key, compare,<="" t,="" td=""></key,>
template <clausing a="" as="" c="" clear="" comparison="" emplace(c++11)="" emplace_hint(c++11)="" erase="" function="" implemented="" insert="" insert_or_assign(c++1)="" is="" map="s" modifiers="" red-b="" sorted="" std::map="" swap<="" td="" try_emplace(c++17)="" }=""><td>td::map<key, compare,<="" t,="" td=""></key,></td></clausing>	td::map <key, compare,<="" t,="" td=""></key,>
<pre>template <clausing a="" as="" c="" clear="" comparison="" emplace(c++11)="" emplace_hint(c++11)="" erase="" extract(c++17)<="" function="" implemented="" insert="" insert_or_assign(c++1="" is="" map="s" modifiers="" pre="" red-b="" sorted="" std::map="" swap="" try_emplace(c++17)="" }=""></clausing></pre>	td::map <key, compare,<="" t,="" td=""></key,>

+	+								+										+				+		
kup	-				-				-					-			-	-							
ınt				retu	urns	the nu	ımbe	er of	eler	nents	mat	ching	g spe	ecific	key										
				(pub	olic me	ember f ement	unctio	on)															†		
nd				(pub	olic me	ember f	unctio	on)														_			
ntain	IS (C+	++20)		che (pub	cks i	if the e	conti	ainer	cor	ntains	elen	nent	with	spe	cific k	ey			+		+	+	+		+
ıal_r	range	e		retu	urns	range	of e	leme	ents	matc	ning	a spe	ecific	key	1			_	+		+	-	-		+
wer_b						_{ember f} an ite			he fi	irst el	emer	nt no	t les	s tha	n the	give	n key				+				+
				(pub	olic me	_{ember f} an ite	unctio	on)											+		+	-	-		+
per_b	ounc	d		(pub	olic me	ember f	unctio	on)	ne n	ist ei	emei	it gri	cate	Lila	iii tiie	givei	i ke y	_			4				+
	_			_					_		-						_	_	-		_	_	_		-
	_								_												4	_			-
\perp	_																								
$\perp \perp \mid$	_			_																	_		_		1
Ш																									
Ш																									
	\top																								T
	\top																								
																									T
	\top																\top					\top			
	\dashv																				+		+		
	+								\dashv								\dashv				+	+			
+	+																				+		+		+
+	+	+		+	+				\dashv					-			\dashv	+	+		+	+	+		+
+	+			+					-										+		+	_	+		+
++	+			-				\vdash	-										+		+	-	+		+
++	+			-					-		-								+	-	+	-	+		+
+	+	-		\dashv	_				\dashv							+-	+	+	+		+	+	+		+
	+			-							-								-		+		+		+
\Box	+	_		-	_				-					_		+-	_	_	+		+	_	+		+
	+			-	_				-		-			-		-	-	_	+		+	_	+		+
	_			_					_							-		_	-		4	_	+		+
	\perp	_		-	_				_					_		-	_	_	-	_	4	_	_		+
				_												-			-		_		_		-
	\rightarrow			_					_												_		_		-
	1			_					_									_				_			1
		-		_																	_		_		_
							1																		
				_	_				-		_			_		_					-	_	_	-	

