The runtime efficiency of three graph algorithms

1. Background
2. BFS

3. DFS

4. Dijkstra

1. Background

At start: a digraph G = (V,E) possibly with weights on edges

Q: What is the size of a digraph?

A We need to use two numbers:

n = the number of nodes m = the number of edges

We assume: at most one edge from = to y.

. 3 . B &
For a digraph: m < n~. Typically, m is much less than n=.

Adjacency sum result

Let the nodes of a digraph be 1, 2, 3 .. . n. Let the number of adjacent nodes to
node ¢ be r;. Then

1o+ ...+ =m

We will consider upper bound on efficiency: results will be Of).

2. BFS

I BREADTH-FIRST-SEARCH(s ., &)

2 executes a breadth first search on graph G starting from
3 source node s

+

5 forEach node = in G

G z.color = white ., x.d = oc, z.om =NIL

7 end

8

9 /% Give source node appropriate values., =/
10 s.color gray , s.d=20

11 > initialize a queue in @

12 ENQUEUE(Q ,s)

13 while ¢ is not empty

14 x = DEQUEUE(Q)

15

16 forEach node y in x.Adj

17 if y.color == white then

18 /# Node y is undiscovered. =/
19 ycolor = gray, yd=zd+1, yr=ua
20 ENQUEUE(Q ,y)

21 end

22 end

23 z.color black

24 end

THREE LOOPS

forEach (lines 5-7)
Each node processed once.
line 6: O(n).

while-loop (line 13)
Each node is added to ¢ at most once. Why?

e Node will be added to @ only when it is white (line 17).

e When node is added to @, it has been colored gray.

e I[nside the while-loop. a node’s color is never set to white.
Consequence: the while-loop has at most n-iterations.

e line 14: O(n) (assuming DEQUEUE’s efficicency is O(1))

e line 23: O(n)

forEach (lines 16-22)

Assume each node is added to €. For each node we process all its adjacent nodes once.
Consequence: owing to adjacency sum result, total number of iterations of forEach-loop
for all nodes is m.

e lines 17 and 19: O(m)

e line 20: O(m) (assuming ENQUEUE’s efficicency is O(1))

Total efficiency of BFS: O(n+n+n+m+m)=0(n+m)

3. DFS

1 DEPTH-FIRST-SEARCH(s, G)

2 executes a depth first search on graph G starting from

3 source node s

4

5 forEach node z in &

6 x.color = white, z.m =NIL

7 end

8

9 > initialize a stack in S

10 PUSH(S ,s5)

11 while S is not empty

12 = POP(S)

13

14 /* If x is white, then it has not yet been discovered.x/

15 if x.color == white then

16 /* x is discovered. Put z back into the stack and
investigate nodes adjacent to z.%/

17 z.color = gray, PUSH(S ,z)

18

19 forEach node y in =z Adj

20 if y.color == white then

21 PUSH(.S %), y.x=2x

22 else if y.color == gray then

23 > a cycle that includes edge (r.y) exists

24 end

25 end

26 end

27 else

28 x.color = black

29 end

30 end

THREE LOOPS

forEach (lines 5-T)
Each node processed once: O(n).

forEach (lines 16-22)

This forEach-loop is only ever run once for each node x. Why?
e Lines 17-26 only executed when x.color is white at line 12.
e At line 17, a white node is colored gray.

e Inside while-loop, a node’s color is never set to white,

Consequence: For each node x. the forEach-loop has one iteration for each node adjacent to
x. Owing to adjacency sum result, the forEach-loop has a total of (at most) m-iterations.

e line 20: O(m)
e line 21: O(m) (assuming PUSH’s efficicency is (1))

e line 23: O(m) (assuming operation at line 23 are O(1))

while-loop (line 13)
This loop is run at most m + 1 times. Why?

e Line 10 is run once and line 21 is run at most m times. Hence at most m + 1 items

are pushed onto the stack.

o At each iteration one item is taken off the stack (line 12).
e line 12: O(m) (assuming POP’s efficicency 1s O(1))

e lines 15 and 28: O(m)

Total efficiency of DFS: O(n+m+m+m+m) = 0O(n+m)

4. Dijkstra

| RELAX(z, y)
2 if yd>zd+ w((z,y)) then
3 yd =zd+w((z,y)), yp.r==x
4 end
1 DLIKSTRA(s, G)
2 forEach node z in G
3 x.color = white. z.d =00, z.m =NIL
1 end
b
it s.color = gray ., sd=0
7 > initialize a priority queue @
8 INSERT(Q ,s,0)
9 while) is not empty
10 x = EXTRACT-MIN(Q)
11 /% Test whether shortest path to = has been found. */
12 if z.color # black then
13 forEach node y in z.Adj
14 yold=y.d, RELAX(z, y)
15 if y.color == white then
16 /* Node y is undiscovered. x/
17 y.color = gray, ywm=xzx
18 INSERT(Q .,y ,y.d)
19 else
20 if yd<yold and y.color # black then
21 /* Take into account that y.old <yd. */
22 INSERT (@ .,y .y.d)
23 end
24 end
25 end
26 x.color black
27 end

28 end

RELAX has efficiency of O(1).

THREE LOOPS

forEach (lines 5-7)

Each node processed once: O(n).

forEach (lines 16-28)

This forEach-loop is only ever run once for each node . Why?
o [f x is black at line 14, then the forEach-loop is not executed.
e If = is not black at line 14, it is set to black after lines 16-28 are executed.
e Inside while-loop, once a node is black, its color does not change.

Consequence: For each node 2 the forEach-loop has one iteration for each node adjacent

to x. Owing to the adjacency sum result, the forEach-loop has a total of {at most) m-
iterations.

Consequence: size of @) is at most m

e lines 17, 18: O(m)

o cither line 21 or 24: O(mlog, m) (assuming INSERT is done with heap)

while-loop (line 13)

This loop is run at most m times. Why?

e An item is inserted into priority @ only at lines 21 or 24. The forEach-loop has a

total of (at most) m-iterations.
e At each iteration one item is taken removed from the priority queue @ (line 14).
e line 14: O(mlog, m) (assuming EXTRACT-MIN is done with heap)

e line 15: O(m)

Total efficiency of Dijkstra: O(n + m +m + mlog, m + mlog, m) = O(n + mlog, m)

This efficiency assumes that the priority queue in Dijkstra is implemented using a heap.

The priority queue could also be implemented using a balanced binary search tree. The
DIJKSTRAZ2 procedure assumes this.

Qo =1 S D e Wk

e et e e B e e T e e T e T
2 00 =1 S 4N e IR = S

20
21
22
23
24
25
26

DIJKSTRA2(s, G)
forEach node z in @&

r.color — white, z.d =0oc, z.m =NIL
end
s.color = gray, sd=0

> initialize a priority queue @
INSERT (@ ,s,0)
while @ is not empty
x = EXTRACT-MIN(Q)
forEach node y in z. Adj
y.old=y.d, RELAX(xz, y)
if y.color == white then
/# Node y is undiscovered. */
y.color = gray, yom==x
INSERT(Q .y ,y.d)
else
if y.d < y.old and y.color # black then

/# Take into account that y.old < y.d.

REMOVE(Q ,y ,y.0ld)
INSERT (Q ,y ,y.d)
end
end
x.color = black
end
end

#/

Size of priority queue) is (at most) n.

line 16 or 20 or 21: O(mlog,n)

Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo

