
Implementing Graphs in C++

Background

Graphs not available in STL (too many different possibilities)

Assumptions

- nodes exist along with accompanying data

- all nodes already stored in own container

- directed graph

Part of London subway system

Example

Nodes
Nodes and edges

x

x's adjacency set

std::unordered_map<int, Node>
allNodes;

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // other node data ...

 std::vector<Node*> to_neighbours;
};

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

Implementation 1

Suitable when

- only need to move forward along edges
- edges added or deleted infrequently

Implementation 2

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // other node data ...

 std::unordered_set<Node*> to_neighbours;
};

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

Suitable when

- only need to move forward along edges
- edges added or deleted frequently

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // other node data ...

 std::vector<Node*> to_neighbours;
 std::vector<Node*> from_neighbours;
};

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

- to what other nodes this node is adjacent
(pointers)

Implementation 3

Suitable when

- need to move both forward and backward along edges
- edges added or deleted infrequently

Implementation 4

enum Color { WHITE, GRAY, BLACK };

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;

 int d; // Distance
 Node* parent; // π
 Color color; // node's color

 std::vector<Node*> to_neighbours;
};

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

- a distance

- a parent node

- a color

Suitable when

- only need to move forward along edges
- edges added or deleted infrequently
- some graph search/traversal algorithm is performed (BFS, DFS)
- memory use not strict (d, parent, color always included)

Implementation 5

enum Color { WHITE, GRAY, BLACK };

struct SearchInfo
{
 int d; // Distance
 Node* path_back; // π
 Color color; // Color
};

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;

 SearchInfo* search_info; // Must be
created!

 std::vector<Node*> to_neighbours;
};

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

- pointer to extra data

Suitable when

- only need to move forward along edges
- edges added or deleted infrequently
- some graph search/traversal algorithm is performed (BFS, DFS)
- memory use strict (create extra data when needed, delete after)

Implementation 6

enum Color { WHITE, GRAY, BLACK };

struct SearchInfo
{
 int d; // Distance
 int parent; // π
 Color color; // Color
};

vector<Node> allNodes;
vector<SearchInfo> allSearchInfos;

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;

 std::vector<int> to_neighbours;
};

Node struct has

- unique node identifier

- a name

- node's adjacency set (indices)

Suitable when

- only need to move forward along edges
- edges added or deleted infrequently
- some graph search/traversal algorithm is performed (BFS, DFS)
- memory use strict (create extra vector when needed, delete after)

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

