Implementing Graphs in C++

Background

Graphs not available in STL (too many different possibilities)

Assumptions
- nodes exist along with accompanying data
- all nodes already stored in own container

- directed graph

Part of London subway system

St.“P'an'n'as-#

Edgware
Faddington == Road

J
Pa:ddhgtn Edgware Marylebone
E 3 Road =

Bayswater
Halland Lancaster pong 3= Moorgate
Park Gueensway Gate gy :
) [ ) & [ )
ipherd's Natting Marble Tottenham Chancery %t Faul's
Bush Hill Gate Arch Court Road Lane #
Bank Ale
"
 High Street g pa Nl Green Park (] g Garde; T s
ensington Kensington ' eormer ] Leice |
{|0lymplal Square Hali_lnslnn &
0 Krightsbridge o Menument 1
g i @ e
ross &
iy Gloucester Blackfrlars Mo
surt Road Sloane St. James's E Y e
- Square Park R
) z ® Temple
F .
West i Earl's Seuth Victorla | Westminster Embankment &&
singtan § Court Kanginptan x & % Ehaeg Crom Ko
Was &



Example

(&) (8)
®) E)

Nodes and edges

H

X's adjacency set

Implementation 1

std::unordered_map<int, Node>
allNodes;

struct Node
{
/I All the data stored in the node
intid;
std::string name;
[l other node data ...

std::vector<Node*> to_neighbours;

k

Node struct has
- unique node identifier
- a name

- node's adjacency set (pointers)

Suitable when

- only need to move forward along edges
- edges added or deleted infrequently



Implementation 2

struct Node
{
/I All the data stored in the node
intid;
std::string name;
/I other node data ...

std::unordered_set<Node*> to_neighbours;

Suitable when

- only need to move forward along edges
- edges added or deleted frequently

Implementation 3

struct Node
{
/I'All the data stored in the node
intid;
std::string hame;
/I other node data ...

std::vector<Node*> to_neighbours;
std::vector<Node*> from_neighbours;

Suitable when

Node struct has
- unique node identifier
- a name

- node's adjacency set (pointers)

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

- to what other nodes this node is adjacent
(pointers)

- need to move both forward and backward along edges

- edges added or deleted infrequently



Implementation 4

enum Color { WHITE, GRAY, BLACK }; Node struct has
struct Node - unique node identifier
{
/I All the data stored in the node -aname
int id;
std::string name; - node's adjacency set (pointers)
int d; // Distance - a distance
Node* parent; // 1T
Color color; // node's color - a parent node
std::vector<Node*> to_neighbours; - a color
3

Suitable when

- only need to move forward along edges

- edges added or deleted infrequently

- some graph search/traversal algorithm is performed (BFS, DFS)
- memory use not strict (d, parent, color always included)



Implementation 5

enum Color { WHITE, GRAY, BLACK };
struct Searchinfo

int d; // Distance
Node* path_back; //
Color color; // Color

¢

struct Node

{
// All the data stored in the node

int id;
std::string name;

Searchinfo* search_info; // Must be
created!

std::vector<Node*> to_neighbours;

2

Suitable when

- only need to move forward along edges

- edges added or deleted infrequently

Node struct has

- unique node identifier

- a name

- node's adjacency set (pointers)

- pointer to extra data

- some graph search/traversal algorithm is performed (BFS, DFS)
- memory use strict (create extra data when needed, delete after)



Implementation 6

enum Color { WHITE, GRAY, BLACK }; Node struct has

struct Searchinfo - unique node identifier

int d; // Distance - aname
int parent; // 1
Color color; // Color

¢

vector<Node> alINodes;
vector<Searchinfo> allSearchinfos;

- node's adjacency set (indices)

struct Node

{
// All the data stored in the node

int id;
std::string name;

std::vector<int> to_neighbours;

Suitable when

- only need to move forward along edges

- edges added or deleted infrequently

- some graph search/traversal algorithm is performed (BFS, DFS)
- memory use strict (create extra vector when needed, delete after)



Tama teos on lisensoitu Creative Commons Nimea-EiKaupallinen-
EiMuutoksia 4.0 Kansainvalinen -lisenssilld. Tarkastele lisenssia osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekija: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

©0clo



