Recursive procedures

- 1. What is a recursive procedure?
- 2. Recursive versus iterative
- 3. An application: binary search

1. What is a recursive procedure?

A recursive procedure calls itself.

A recurrence function is defined using itself.

General form of simple recurrence function *f*():

 $f(\text{argument}) = \begin{cases} \text{base case rule, where } f \text{ does not appear} & \text{when argument is 'small'} \\ \text{recurrence case rule, where } f \text{ appears} & \text{when argument is not 'small'} \end{cases}$

Example: computing power of a number

Recurrence function for $f(x_n) = x^n$, when n is posinteger? Basic idea: $x^n = x(x^{n-1})$. $f(x,n) = \begin{cases} 1 & \text{when } n = 0 \\ x \cdot f(x, n-1) & \text{when } n > 0 \end{cases}$

Q: When can we use a recursive procedure?

A: When the problem we want to solve can be expressed in terms of a smaller version of itself.

Example: computing power of a number (contd)

 $\begin{array}{rcl} x^n \ = \ x \ \cdot \ (x^{n-1}) \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Features of recursive procedure:

- base case(s) or trivial case(s): procedure does not call itself
- recursion case(s): procedure calls itself
- recursion level
- each call has own parameters, own local variables
- call stack (what calls are still incomplete)

Example: computing power of a number (contd)

```
POWR(x, n)
1
    input n is positive integer, x is some number output: x^n
2
    /* We compute x^n recursively. */
3
  if n == 0 then
4
        return 1
5
6
  else
        z = POWR(x, n-1)
7
        return x \cdot z
8
9
    end
```


Compute POWR(2,3).

step	recursion level	code line(s)	computation	stack
1	ł	7	z = POWR(a, a)	POWR (2,3)
え	2	7	z = POWR(2,1)	$\frac{POWR(a,a)}{POWR(a,3)}$
3	3	7	z=POWR(2,0)	POWR (2,1) POWR (2,2) POWR (2,3)
ų	ዣ	5	return t	$\frac{POWR(a,0)}{POWR(a,1)}$ $\frac{POWR(a,2)}{POWR(a,3)}$
5	3	7,8	Z = 1 return 2	POWR (2,1) POWR (2,2) POWR (2,3)
e	ຊ	7,8	Z=2 return 4	$\frac{POWR(a, a)}{POWR(a, 3)}$
7	1	7,8	Z = 4 return 8	POWR (2,3)

2. Recursive versus iterative

Usually a recursive procedure can be converted to an equivalent iterative procedure.

Alternative to a recursive procedure: iterative (looping) procedure: does not call itself

Correspondences:

recursive procedure	iterative procedure
recursion level	iteration
call stack	own stack (accumulator variables)
base case condition	iteration termination condition
recursion case(s)	in-loop computations

Example: computing power of a number (contd)

```
1
    POWR(x, n)
                                                                         POWI(x, n)
                                                                     1
    input n is positive integer, x is some number output: x^n
2
                                                                     2
                                                                          input int n, some number x output: y
    /* We compute x^n recursively. */
3
                                                                     3
                                                                          /* We compute x^n iteratively for positive integer n. */
    if n == 0 then
4
                                                                     4
                                                                         y = 1
5
        return 1
                                                                     5
                                                                          while n > 0
6
    else
                                                                     6
                                                                          y = x \cdot y, \ n = n - 1
        z = \text{POWR}(x, n-1)
7
                                                                     7
                                                                          end
8
        return x \cdot z
                                                                     8
                                                                          return y
9
    end
```

Π

Why prefer recursive procedure over iterative procedure?

- often recursive is more compact
- no need to handle stack
- often easier to write/understand

Why prefer iterative procedure over recursive procedure?

- often has better performance for some programming languages
- allows programmer better control over data structures

Ongoing debate: try searching 'why recursive is better than iterative'.

3. An application: binary search

Problem: find a value key in an sorted array A[1..n]

Idea: split array in half

Description

 We start with array A[1..n] of numbers in sorted order from smallest to largest. We want to find location of key in A[1..n], if it occurs.
 The range of A we are looking in is A[L..R]. We compute an index roughly halfway between L and R: call it mid. If key ≤ A[mid], then we continue searching in A[L..mid]. If key > A[mid], then we continue searching in A[(mid+1)..R].
 We keep halving the range we are searching in until either, we find the location of key or key does not occur in array.

```
1
     BINSEARCH(A, L, R, key)
2
     input A[1..n] is an array containing numbers; L and R are the
     leftmost and rightmost indices that concern us; key is the value
3
4
     we want to find
5
     output: the index at which key occurs A or -1
     /* The numbers in A must be in order from smallest to largest.
6
     We search in array A[L,R] for key. If key is found, we return
7
     its location, otherwise we return -1.*/
8
     if L == R then
9
10
       if A[L] == key then
          return L
11
12
       else
13
         return -1
14
       end
15
     else
16
       mid = |(L+R)/2|
17
       if key \leq A[mid] then
         return BINSEARCH(A, L, mid, key)
18
19
       else
20
         return BINSEARCH(A, mid + 1, R, key)
21
       end
22
     end
```

Example

Compute BINSEARCH(A,1, 7, 12) where	A =	- 21	- 20	- 18	-6	5	12	13	
--------------------------------------	-----	------	------	------	----	---	----	----	--

step	recursion level	code line(s)	computation	array A	f = mid	↑=L 1	+=R
-	-	~	L=1 R=7	- 21 - 20	- 18 - 6	5 12	13
1	1	16	$m_1d = [8/2] = 4$	<u>^</u>			ſ
		20	return BINSEARCH(A, 5, 7, 12)	- 21 - 20	- 18 - G - 18 - G	'5'12 ↑	13
٦	2	16 1B	$mid = \lfloor 12/2 \rfloor = G$	- 21 - 20	- 18 - 6	5 12 12	13
3	3	16	BINSEARCH($A, 5, 6, 12$) mid = $\lfloor 11/2 \rfloor = 5$	- 21 - 20 -	- 18 - 6	5 12	13
		20	return BINSEARCH(A,6,6,12)			↑ ↑↑ .	
ዛ	ч	11	return 6	- 21 - 20 -	18 - 6	5 12	13
						<u>^ 1</u>	

.

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

made by Frank Cameron

