
TIE-20106 1

TIE-20106 DATA STRUCTURES AND ALGORITHMS

TIE-20106 2

Bibliography
These lecture notes are based on the notes for the course
OHJ-2016 Utilization of Data Structures. All editorial work is
done by Terhi Kilamo and the content is based on the work of
Professor Valmari and lecturer Minna Ruuska.

Most algorithms are originally from the book Introduction to
Algorithms; Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein.

In addition the following books have been used when
completing this material:
• Introduction to The Design & Analysis of Algorithms; Anany

Levitin
• Olioiden ohjelmointi C++:lla; Matti Rintala, Jyke Jokinen
• Tietorakenteet ja Algoritmit; Ilkka Kokkarinen, Kirsti

Ala-Mutka

TIE-20106 3

1 Introduction
Let’s talk first about the motivation for studying data structures
and algorithms

Algorithms in the world

http://www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world.html

TIE-20106 4

1.1 Why?
What are the three most important algorithms that affect
YOUR daily life?

Picture: Chris Watt

TIE-20106 5

There are no computer programs without algorithms

• algorithms make for example the following applications
possible:

TIE-20106 6

TIE-20106 7

algorithms are at work whenever a computer is used

TIE-20106 8

Data structures are needed to store and acces the data
handled in the programs easily

• there are several different types of data structures and not
all of them are suitable for all tasks
⇒ it is the programmer’s job to know which to choose
⇒ the behaviour, strengths and weaknesses of the
alternatives must be known

Modern programming languages provide easy to use library
implementations for data structures (C++ standard library,
JCF). Understanding the properties of these and the limitations
there may be for using them requires theoretical knowledge
on basic data structures.

TIE-20106 9

Ever gotten frustrated on a program running slowly?
• functionality is naturally a top priority but effiency and thus

the usability and user experience are not meaningless side
remarks

• it is important to take memory- and time consumption into
account when making decisions in program
implementation

• using a library implementation seems more straightforward
than is really is

This course discusses these issues

TIE-20106 10

2 Terminology and conventions
This chapter covers the terminology and the syntax of the
algorithms used on the course.

The differences between algorithms represented in
pseudocode and the actual solution in a programming
language is discussed. The sorting algorithm INSERTION-SORT is
used as an example.

TIE-20106 11

2.1 Goals of the course
As discussed earlier, the main goal of the course is to provide a
sufficient knowledge on and the basic tools for choosing the
most suitable solution to a given programming problem. The
course also aims to give the student the ability to evaluate the
decisions made during the design process on a basic level.

The data structures and algorithms commonly used in
programming are covered.

• The course concentrates on choosing a suitable data
structure for solving a given problem.

• In addition, common types of problems and the algorithms
to solve them are covered.

TIE-20106 12

• The course concentrates on
the so called “good algo-
rithms” shown in the picture
on the right.

• The emphasis is on the time
the algorithm uses to process
the data as the size of the in-
put gets larger. Less attention
is paid to optimization details. SIZE OF INPUT

TIME 1st solution

Hacker optimized

Good algorithm

Hacker optimized
good algorithm

TIE-20106 13

2.2 Terminology
A data structure is a collection of related data items stored in
a segment of the computer’s memory.

• data can be added and searched by using suitable
algorithms.

• there can be several different levels in a data structure: a
data structure can consist of other data structures.

An algorithm is a well defined set of instructions that takes in a
set of input and produces a set of output, i.e. it gives a solution
to a given problem.

TIE-20106 14

• well defined =
– each step is detailed enough for the reader (human or

machine) to execute
– each step in unambiguous
– the same requirements apply to the execution order of

the steps
– the execution is finite, i.e. it ends after a finite amount of

steps.

TIE-20106 15

An algorithm solves a well defined problem.
• The relation between the results and the given input is

determined by the problem
• for example:

– sorting the contents of the array
input: a sequence of numbers a1, a2, . . . , an
results: numbers a1, a2, . . . , an sorted into an ascending order

– finding flight connections
input: a graph of flight connections, cities of departure and
destination
results: Flight numbers, connection and price information

TIE-20106 16

• an instance of the problem is created by giving legal values
to the elements of the problem’s input

– for example: an instance of the sorting problem: 31, 41,
59, 26, 41, 58

An algorithm is correct, if it halts and gives the correct output
as the result each time it is given a legal input.

TIE-20106 17

• A certain set of formally possible inputs can be forbidden by
the definition of the algorithm or the problem

TIE-20106 18

an algorithm can be incorrect in three different ways:
– it produces an incorrect result
– it crashes during execution
– it never halts, i.e. has infinite execution

an incorrect algorithm may sometimes be a very usefull one
as long as a certain amount of errors is tolerated.
– for example, checking whether a number is prime

TIE-20106 19

In principle any method of representing algorithms can be
used as long as the result is precise and unambiguous
• usually algorithms are implemented as computer programs

or in hardware
• in practise, the implementation must take several

“engineering viewpoints” into accout
– accomodation to the situation and environment
– checking the legality of inputs
– handling error situations
– limitations of the programming language
– speed limitations and practicality issues concerning the

hardware and the programming language
– maintenance issues ⇒ modularity etc.
⇒ the idea of the algorithm may get lost under the
implementation details

TIE-20106 20

On this course we concentrate on the algorithmic ideas and
therefore usually represent the algorithms in pseudocode
without legality checks, error handling etc.

Let’s take, for example, an algorithm suitable for sorting small
arrays called INSERTION-SORT:

Figure 1: picture from Wikipedia

TIE-20106 21

• the basic idea:
– during execution the leftmost ele-

ments in the array are sorted and
the rest are still unsorted

– the algorithm starts from the sec-
ond element and iteratively steps
through the elements upto the end
of the array

• on each step the algorithm searches
for the point in the sorted part of the
array, where the first element in the
unsorted range should go to.

– room is made for the new element
by moving the larger elements one
step to the right

– the element is placed to it’s cor-
rect position and the size of the
sorted range in the beginning of
the array is incremented by one.

594131

5841265941

5841265941

31

31

26

595841413126

585941413126

584159413126

5841

TIE-20106 22

In pseudocode used on the course INSERTION-SORT looks like
this:

INSERTION-SORT(A) (input in array A)
1 for j := 2 to A.length do (increment the size of the sorted range)
2 key := A[j] (handle the first unsorted element)
3 i := j − 1
4 while i > 0 and A[i] > key do(find the correct location for the new element)
5 A[i + 1] := A[i] (make room for the new element)
6 i := i− 1
7 A[i + 1] := key (set the new element to its correct location)

• indentation is used to indicate the range of conditions and
loop structures

• (comments) are written in parentheses in italics
• the “:=” is used as the assignment operator (“=” is the

comparison operator)
• the lines starting with the character ▷ give textual

instructions

TIE-20106 23

• members of structure elements (or objects) are referred to
with the dot notation.
– e.g. student .name, student .number

• the members of a structure accessed through a pointer x
are referred to with the → character
– e.g. x→name, x→number

• variables are local unless mentioned otherwise
• a collection of elements, an array or a pointer, is a

reference to the collection
– larger data structures like the ones mentioned should

always be passed by reference
• a pass-by-value mechanism is used for single parameters

(just like C++ does)
• a pointer or a reference can also have no target: NIL

TIE-20106 24

2.3 Implementing algorithms
In the real world you need to be able to use theoretical
knowledge in practise.

For example: apply a given sorting algorithm ins a certain
programming problem
• numbers are rarely sorted alone, we sort structures with

– a key
– satellite data

• the key sets the order
⇒ it is used in the comparisons

• the satellite data is not used in the comparison, but it must
be moved around together with the key

TIE-20106 25

The INSERTION-SORT algorithm from the previous chapter would
change as follows if there were some satellite data used:
1 for j := 2 to A.length do
2 temp := A[j]
3 i := j − 1
4 while i > 0 and A[i].key > temp.key do
5 A[i + 1] := A[i]
6 i := i− 1
7 A[i + 1] := temp

• An array of pointers to structures should be used with a lot
of satellite data. The sorting is done with the pointers and
the structures can then be moved directly to their correct
locations.

TIE-20106 26

The programming language and the problem to be solved
also often dictate other implementation details, for example:

• Indexing starts from 0 (in pseudocode often from 1)
• Is indexing even used, or some other method of accessing

data (or do we use arrays or some other data structures)
• (C++) Is the data really inside the array/datastructure, or

somewhere else at the end of a pointer (in which case the
data doesn’t have to be moved and sharing it is easier).
Many other programming languages always use
pointers/references, so you don’t have to choose.

• If you refer to the data indirectly from elsewhere, does it
happen with
– Pointers (or references)
– Smart pointers (C++, shared_ptr)
– Iterators (if the data is inside a datastructure)
– Index (if the data is inside an array)
– Search key (if the data is insde a data structure with fast

search)

TIE-20106 27

• Is recursion implemented really as recursion or as iteration
• Are algorithm "parameters" in pseudocode really

parameters in code, or just variables

TIE-20106 28

In order to make an executable program, additional
information is needed to implement INSERTION-SORT

• an actual programming language must be used with its
syntax for defining variables and functions

• a main program that takes care of reading the input,
checking its legality and printing the results is also needed
– it is common that the main is longer than the actual

algorithm

TIE-20106 29

The implementation of the program described abowe in C++:

#include <iostream>
#include <vector>
typedef std::vector<int> Array;

void insertionSort(Array & A) {
int key, i; unsigned int j;
for(j = 1; j < A.size(); ++j) {

key = A.at(j); i = j-1;
while(i >= 0 && A.at(i) > key) {

A.at(i+1) = A.at(i); --i;
}
A.at(i+1) = key;

}
}

int main() {
unsigned int i;
// getting the amount of elements
std::cout << "Give the size of the array 0...: "; std::cin >> i;

TIE-20106 30

Array A(i); // creating the array
// reading in the elements
for(i = 0; i < A.size(); ++i) {

std::cout << "Give A[" << i+1 << "]: ";
std::cin >> A.at(i);

}
insertionSort(A); // sorting

// print nicely
for(i = 0; i < A.size(); ++i) {

if(i % 5 == 0) {
std::cout << std::endl;

}
else {

std::cout << " ";
}
std::cout << A.at(i);

}
std::cout << std::endl;

}

TIE-20106 31

The program code is significantly longer than the
pseudocode. It is also more difficult to see the central
characteristics of the algorithm.

This course concentrates on the principles of algorithms and
data structures. Therefore using program code doesn’t serve
the goals of the course.

⇒ From now on, program code implementations are not
normally shown.

TIE-20106 32

3 Efficiency and algorithm design
This chapter dicusses the analysis of algorithms: the efficiency
of algorithms and the notations used to describe the
asymptotic behavior of an algorithm.

In addition the chapter introduces two algorithm design
techniques: decrease and conquer and divide and conquer.

t

n

TIE-20106 33

3.1 Asymptotic notations
It is occasionally important to know the exact time it takes to
perform a certain operation (in real time systems for example).

Most of the time it is enough to know how the running time of
the algorithm changes as the input gets larger.
• The advantage: the calculations are not tied to a given

processor, architecture or a programming language.
• In fact, the analysis is not tied to programming at all but can

be used to describe the efficiency of any behaviour that
consists of successive operations.

TIE-20106 34

• The time efficiency analysis is simplified by assuming that all
operations that are independent of the size of the input
take the same amount of time to execute.

• Furthermore, the amount of times a certain operation is
done is irrelevant as long as the amount is constant.

• We investigate how many times each row is executed
during the execution of the algorithm and add the results
together.

TIE-20106 35

• The result is further simplified by removing any constant
coefficients and lower-order terms.
⇒ This can be done since as the input gets large enough
the lower-order terms get insigficant when compared to the
leading term.
⇒ The approach naturally doesn’t produce reliable results
with small inputs. However, when the inputs are small,
programs usually are efficient enough in any case.

• The final result is the efficiency of the algorithm and is
denoted it with the greek alphabet theta, Θ.

f (n) = 23n2 + 2n + 15 ⇒ f ∈ Θ(n2)

f (n) = 1
2n lg n + n ⇒ f ∈ Θ(n lg n)

TIE-20106 36

Example 1: addition of the elements in an array

1 for i := 1 to A.length do
2 sum := sum + A[i]

• if the size of the array A is n, line 1 is executed n + 1 times
• line 2 is executed n times
• the running time increases as n gets larger:

n time = 2n + 1

1 3

10 21

100 201

1000 2001

10000 20001

• notice how the value of n dominates the running time

TIE-20106 37

• let’s simplify the result as described earlier by taking away
the constant coefficients and the lower-order terms:

f (n) = 2n + 1 ⇒ n

⇒ we get f ∈ Θ(n) as the result

⇒ the running time depends linearly on the size of the input.

TIE-20106 38

Example 2: searching from an unsorted array

1 for i := 1 to A.length do
2 if A[i] = x then
3 return i

• the location of the searched element in the array affects
the running time.

• the running time depends now both on the size of the input
and on the order of the elements
⇒ we must separately handle the best-case, worst-case
and average-case efficiencies.

TIE-20106 39

• in the best case the element we’re searching for is the first
element in the array.
⇒ the element is found in constant time, i.e. the efficiency is
Θ(1)

• in the worst case the element is the last element in the array
or there are no matching elements.

• now line 1 gets executed n + 1 times and line 2 n times
⇒ efficiency is Θ(n).

• determining the average-case efficiency is not as
straightforward

TIE-20106 40

• first we must make some assumptions on the average,
typical inputs:

– the probability p that the element is in the array is
(0 ≤ p ≤ 1)

– the probability of finding the first match in each position
in the array is the same

• we can find out the average amount of comparisons by
using the probabilities

• the probability that the element is not found is 1 - p, and we
must make n comparisons

• the probability for the first match occuring at the index i, is
p/n, and the amount of comparisons needed is i

• the number of comparisons is:

[1 · p
n
+ 2 · p

n
+ · · · + i · p

n
· · · + n · p

n
] + n · (1− p)

TIE-20106 41

• if we assume that the element is found in the array, i.e. p = 1,
we get (n+1)/2 which is Θ(n)

⇒ since also the case where the element is not found in the
array has linear efficiency we can be quite confident that
the average efficiency is Θ(n)

• it is important to keep in mind that all inputs are usually not
as probable.

⇒ each case needs to be investigated separately.

TIE-20106 42

Example 3: finding the common element in two arrays
1 for i := 1 to A.length do
2 for j := 1 to B .length do
3 if A[i] = B[j] then
4 return A[i]

• line 1 is executed 1 – (n + 1) times
• line 2 is executed 1 – (n · (n + 1)) times
• line 3 is executed 1 – (n · n) times
• line 4 is executed at most once

TIE-20106 43

• the algorithm is fastest when the first element of both arrays
is the same
⇒ the best case efficiency is Θ(1)

• in the worst case there are no common elements in the
arrays or the last elements are the same
⇒ the efficiency is 2n2 + 2n + 1 = Θ(n2)

• on average we can assume that both arrays need to be
investigated approximately half way through.
⇒ the efficiency is Θ(n2) (or Θ(nm) if the arrays are of
different lengths)

TIE-20106 44

3.2 Algorithm Design Technique: Decrease and
conquer
The most straightforward algorithm design technique covered
on the course is decrease and conquer.
• initially the entire input is unprocessed
• the algorithm processes a small piece of the input on each

round
⇒ the amount of processed data gets larger and the
amount of unprocessed data gets smaller

• finally there is no unprocessed data and the algorithm halts

These types of algorithms are easy to implement and work
efficiently on small inputs.

TIE-20106 45

The Insertion-Sort seen earlier is a “decrease and conquer”
algorithm.

• initially the entire array is (possibly) unsorted
• on each round the size of the sorted range in the beginning

of the array increases by one element
• in the end the entire array is sorted

TIE-20106 46

INSERTION-SORT

INSERTION-SORT(A) (input in array A)
1 for j := 2 to A.length do (move the limit of the sorted range)
2 key := A[j] (handle the first unsorted element)
3 i := j − 1
4 while i > 0 and A[i] > key do(find the correct location of the new element)
5 A[i + 1] := A[i] (make room for the new element)
6 i := i− 1
7 A[i + 1] := key (set the new element to it’s correct location)

• line 1 is executed n times
• lines 2 and 3 are executed n - 1 times
• line 4 is executed at least n - 1 and at most (2 + 3 + 4 + · · · +
n - 2) times

• lines 5 and 6 are executed at least 0 and at most (1 + 2 + 3
+ 4 + · · · + n - 3) times

TIE-20106 47

• in the best case the entire array is already sorted and the
running time of the entire algorithm is at least Θ(n)

• in the worst case the array is in a reversed order. Θ(n2) time
is used

• once again determining the average case is more difficult:
• let’s assume that out of randomly selected element pairs

half is in an incorrect order in the array

⇒ the amount of comparisons needed is half the amount of
the worst case where all the element pairs were in an
incorrect order

⇒ the average-case running time is the worst-case running
time divided by two: [(n - 1)n]/ 4 = Θ(n2)

TIE-20106 48

3.3 Algorithm Design Technique: Divide and
Conquer
We’ve earlier seen the decrease and conquer algorithm
design technique and the algorithm INSERTION-SORT as an
example of it.

Now another technique called divide and conquer is
introduced. It is often more efficient than the decrease and
conquer approach.
• the problem is divided into several subproblems that are like

the original but smaller in size.
• small subproblems are solved straightforwardly
• larger subproblems are further divided into smaller units
• finally the solutions of the subproblems are combined to get

the solution to the original problem

Let’s get back to the claim made earlier about the complexity
notation not being fixed to programs and take an everyday,
concrete example

TIE-20106 49

Example: finding the false goldcoin

• The problem is well-known from logic problems.
• We have n gold coins, one of which is false. The false coin

looks the same as the real ones but is lighter than the others.
We have a scale we can use and our task is to find the false
coin.

• We can solve the problem with Decrease and conquer by
choosing a random coin and by comparing it to the other
coins one at a time.
⇒ At least 1 and at most n - 1 weighings are needed. The
best-case efficiency is Θ(1) and the worst and average case
efficiencies are Θ(n).

• Alternatively we can always take two coins at random and
weigh them. At most n/2 weighings are needed and the
efficiency of the solution is still the same.

TIE-20106 50

The same problem can be solved more
efficiently with divide and conquer:

• Divide the coins into the two pans on
the scales. The coins on the heavier
side are all authentic, so they don’t
need to be investigated further.

• Continue the search similarly with the
lighter half, i.e. the half that con-
tains the false coin, until there is only
one coin in the pan, the coin that we
know is false.

possible false ones genuine for sure

• The solution is recursive and the base case is the situation
where there is only one possible coin that can be false.

TIE-20106 51

• The amount of coins on each weighing is 2 to the power of
the amount of weighings still required: on the highest level
there are 2weighings coins, so based on the definition of the
logarithm:

2weighings = n ⇒ log2n = weighings

• Only log2n weighings is needed, which is significantly fewer
than n/2 when the amount of coins is large.
⇒ The complexity of the solution is Θ(lg n) both in the best
and the worst-case.

TIE-20106 52

3.4 QUICKSORT

Let’s next cover a very efficient sorting algorithm QUICKSORT.

QUICKSORT is a divide and conquer algorithm.

The division of the problem into smaller subproblems
• Select one of the elements in the array as a pivot, i.e. the

element which partitions the array.
• Change the order of the elements in the array so that all

elements smaller or equal to the pivot are placed before it
and the larger elements after it.

• Continue dividing the upper and lower halves into smaller
subarrays, until the subarrays contain 0 or 1 elements.

TIE-20106 53

Smaller subproblems:
• Subarrays of the size 0 and 1 are already sorted

Combining the sorted subarrays:

• The entire (sub) array is automatically sorted when its upper
and lower halves are sorted.
– all elements in the lower half are smaller than the

elements in the upper half, as they should be

QUICKSORT-algorithm
QUICKSORT(A, p, r)
1 if p < r then (do nothing in the trivial case)
2 q := PARTITION(A, p, r) (partition in two)
3 QUICKSORT(A, p, q − 1) (sort the elements smaller than the pivot)
4 QUICKSORT(A, q + 1, r) (sort the elements larger than the pivot)

TIE-20106 54

The partition algorithm rearranges the subarray in place
PARTITION(A, p, r)

1 x := A[r] (choose the last element as the pivot)
2 i := p− 1 (use i to mark the end of the smaller elements)
4 for j := p to r − 1 do (scan to the second to last element)
6 if A[j] ≤ x (if A[j] goes to the half with the smaller elements...)
9 i := i + 1 (... increment the amount of the smaller elements...)
12 exchange A[i] ↔ A[j] (... and move A[j] there)
12 exchange A[i + 1] ↔ A[r] (place the pivot between the halves)
13 return i + 1 (return the location of the pivot)

How fast is PARTITION?
• The for-loop is executed n - 1 times when n is r - p
• All other operations are constant time.
⇒ The running-time is Θ(n).

TIE-20106 55

Determining the running-time of QUICKSORT is more difficult
since it is recursive. Therefore the equation for its running time
would also be recursives.

Finding the recursive equation is, however, beyond the goals
of this course so we’ll settle for a less formal approach

• As all the operations of QUICKSORT except PARTITION and the
recursive call are constant time, let’s concentrate on the
time used by the instances of PARTITION.

1 1

1 1
1

n

n

n

1

1

11

12 2
n − n − 1

n − n − 1

TIE-20106 56

• The total time is the sum of the running times of the nodes in
the picture abowe.

• The execution is constant time for an array of size 1.
• For the other the execution is linear to the size of the array.
⇒ The total time is Θ(the sum of the numbers of the nodes).

TIE-20106 57

Worst-case running time
• The number of a node is always smaller than the

number of its parent, since the pivot is already in
its correct location and doesn’t go into either of
the sorted subarrays
⇒ there can be atmost n levels in the tree

• the worst case is realized when the smallest or the
largest element is always chosen as the pivot
– this happens, for example, with an array already

sorted
• the sum of the node numbers is n + n - 1 + · · · + 2 +

1
⇒ the worst case running time of QUICKSORT is Θ(n2)

n−1

n−2

k

2

1

n

TIE-20106 58

The best-case is when the array is always divided evenly in half.

• The picture below shows how the subarrays get smaller.
– The grey boxes mark elements already in their correct

position.
• The amount of work on each level is in Θ(n).

– a pessimistic estimate on the height of the execution tree
is in the best-case ⇒ Θ(lg n)

⇒ The upper limit for the best-case efficiency is Θ(n lg n).

O(lg n)

O(n)

O(n)

O(n)

O(n)

O(n)

TIE-20106 59

The best-case and the worst-case efficiencies of QUICKSORT
differ significantly.

• It would be interesting to know the average-case
running-time.

• Analyzing it is beyond the goals of the course but it has
been shown that if the data is evenly distributed its average
running-time is Θ(n lg n).

• Thus the average running-time is quite good.

TIE-20106 60

An unfortunate fact with QUICKSORT is that its worst-case
efficiency is poor and in practise the worst-case situation is
quite probable.
• It is easy to see that there can be situations where the data

is already sorted or almost sorted.
⇒ A way to decrease the risk of the systematic occurence of
the worst-case situation’s likelyhood is needed.

Randomization has proved to be quite efficient.

TIE-20106 61

Advantages and disadvantages of QUICKSORT

Advantages:
• sorts the array very efficiently in average

– the average-case running-time is Θ(n lg n)

– the constant coefficient is small
• requires only a constant amount of extra memory
• if well-suited for the virtual memory environment

Disadvantages:
• the worst-case running-time is Θ(n2)

• without randomization the worst-case input is far too
common

• the algorithm is recursive
⇒ the stack uses extra memory

• instability

TIE-20106 62

3.5 Algorithm Design Technique: Randomization
Randomization is one of the design techniques of algorithms.

• A pathological occurence of the worst-case inputs can be
avoided with it.

• The best-case and the worst-case running-times don’t
usually change, but their likelyhood in practise decreases.

• Disadvantageous inputs are exactly as likely as any other
inputs regardless of the original distribution of the inputs.

• The input can be randomized either by randomizing it
before running the algorithm or by embedding the
randomization into the algorithm.

– the latter approach usually gives better results
– often it is also easier than preprocessing the input.

TIE-20106 63

• Randomization is usually a good idea when
– the algorithm can continue its execution in several ways
– it is difficult to see which way is a good one
– most of the ways are good
– a few bad guesses among the good ones don’t make

much damage
• For example, QUICKSORT can choose any element in the

array as the pivot
– besides the almost smallest and the almost largest

elements, all other elements are a good choise
– it is difficult to guess when making the selection whether

the element is almost the smallest/largest
– a few bad guesses now and then doesn’t ruin the

efficiency of QUICKSORT

⇒ randomization can be used with QUICKSORT

TIE-20106 64

With randomization an algorithm RANDOMIZED-QUICKSORT
which uses a randomized PARTITION can be written
• A[r] is not always chosen as the pivot. Instead, a random

element from the entire subarray is selected as the pivot
• In order to keep PARTITION correct, the pivot is still placed in

the index r in the array
⇒ Now the partition is quite likely even regardless of the
input and how the array has earlier been processed.

RANDOMIZED-PARTITION(A, p, r)
1 i := RANDOM(p, r) (choose a random element as pivot)
2 exchange A[r] ↔ A[i] (store it as the last element)
3 return PARTITION(A, p, r) (call the normal partition)

RANDOMIZED-QUICKSORT(A, p, r)
1 if p < r then
2 q := RANDOMIZED-PARTITION(A, p, r)
3 RANDOMIZED-QUICKSORT(A, p, q − 1)
4 RANDOMIZED-QUICKSORT(A, q + 1, r)

TIE-20106 65

The running-time of RANDOMIZED-QUICKSORT is Θ(n lg n) on
average just like with normal QUICKSORT.
• However, the assumption made in analyzing the

average-case running-time that the pivot-element is the
smallest, the second smallest etc. element in the subarray
with the same likelyhood holds for RANDOMIZED-QUICKSORT
for sure.

• This holds for the normal QUICKSORT only if the data is evenly
distributed.

⇒ RANDOMIZED-QUICKSORT is better than the normal QUICKSORT
in general

TIE-20106 66

QUICKSORT can be made more efficient with other methods:
• An algorithm efficient with small inputs (e.g.INSERTIONSORT)

can be used to sort the subarrays.
– they can also be left unsorted and in the end sort the

entire array with INSERTIONSORT

• The median of three randomly selected elements can be
used as the pivot.

• It’s always possible to use the median as the pivot.

TIE-20106 67

The median can be found efficiently with the so called lazy
QUICKSORT.

• Divide the array into a “small elements” lower half and a
“large elements” upper half like in QUICKSORT.

• Calculate which half the ith element belongs to and
continue recursively from there.

• The other half does not need to be processed further.

RANDOMIZED-SELECT(A, p, r, i)
1 if p = r then (if the subarray is of size 1...)
2 return A[p] (... return the only element)
3 q := RANDOMIZED-PARTITION(A, p, r) (divide the array into two halves)
4 k := q − p + 1 (calculate the number of the pivot)
5 if i = k then (if the pivot is the ith element in the array...)
6 return A[q] (...return it)
7 else if i < k then (continue the search from the small ones)
8 return RANDOMIZED-SELECT(A, p, q − 1, i)
9 else (continue on the large ones)
10 return RANDOMIZED-SELECT(A, q + 1, r, i− k)

TIE-20106 68

The lower-bound for the running-time of RANDOMIZED-SELECT:
• Again everything else is constant time except the call of

RANDOMIZED-PARTITION and the recursive call.
• In the best-case the pivot selected by

RANDOMIZED-PARTITION is the ith element and the execution
ends.

• RANDOMIZED-PARTITION is run once for the entire array.
⇒ The algorithm’s best case running-time is Θ(n).

The upper-bound for the running-time of RANDOMIZED-SELECT:

• RANDOMIZED-PARTITION always ends up choosing the smallest
or the largest element and the ith element is left in the
larger half.

• the amount of work is decreased only by one step on each
level of recursion.

⇒ The worst case running-time of the algorithm is Θ(n2).

TIE-20106 69

The average-case running-time is however Θ(n).

The algorithm is found in STL under the name nth_element.

The algorithm can also be made to always work in linear time.

TIE-20106 70

4 Sorting algorithms
This chapter covers two efficient sorting algorithms that sort
the data in place.

In addition their central ideas are applied to solving two
separate problems - priority queue and finding the median.

Finally the maximum efficiency of comparison sorts, i.e. sorting
based on the comparisons of the elements, is discussed.
Sorting algorithms that use other approaches than
comparisons are also examined.

TIE-20106 71

4.1 Sorting with a heap
This chapter introduces a sorting algorithm HEAPSORT that uses
a very important data structure, a heap, to manage data
during execution.

Binary trees

Before we get our hands on the heap, let’s define what a
binary tree is

• a structure that consists of nodes who each have 0, 1 or 2
chidren

• the children are called left and right
• a node is the parent of its children
• a childless node is called a leaf, and the other nodes are

internal nodes
• a binary tree has at most one node that has no parent, i.e.

the root
– all other nodes are the root’s children, grandchildren etc.

TIE-20106 72

• the descendants of each node form the subtree of the
binary tree with the node as the root

• The height of a node in
a binary tree is the length
of the longest simple down-
ward path from the node to
a leaf

– the edges are counted
into the height, the height
of a leaf is 0

• the height of a binary tree is
the height of it’s root

inner nodes root

leaves

• a binary tree is completely balanced if the difference
between the height of the root’s left and right subtrees is
atmost one and the subtrees are completely balanced

• the height of a binary tree with n nodes is at least ⌊lg n⌋ and
atmost n - 1
⇒ O(n) and Ω(lg n)

TIE-20106 73

Heap

An array A[1 . . . n] is a heap, if A[i] ≥ A[2i] and A[i] ≥ A[2i + 1]
always when 1 ≤ i ≤ ⌊n2⌋ (and 2i + 1 ≤ n).

The structure is easier to understand if we define the heap as a
completely balanced binary tree, where

• the root is stored in the array at
index 1

• the children of the node at in-
dex i are stored at 2i and 2i + 1
(if they exist)

• the parent of the node at index
i is stored at ⌊ i2⌋

1215

147

17

5

108

2 7

Thus, the value of each node is larger or equal to the values of
its children

TIE-20106 74

Each level in the heap tree is full, except maybe the last one,
where only some rightmost leaves may be missing

In order to make it easier to see the heap as a tree, let’s define
subroutines that find the parent and the children.
• they can be implemented very efficiently by shifting bits
• the running time of each is always Θ(1)

PARENT(i)
return ⌊i/2⌋

LEFT(i)
return 2i

RIGHT(i)
return 2i + 1

⇒ Now the heap property can be given with:
A[PARENT(i)] ≥ A[i] always when 2 ≤ i ≤ A.heapsize

• A.heapsize gives the size of the heap (we’ll later see that it’s
not necessarily the size of the array)

TIE-20106 75

Due to the heap property, the largest element of the heap is
always its root, i.e. at the first index in the array.

If the height of the heap is h, the amount of its nodes is
between 2h . . . 2h+1 − 1.
⇒ If there are n nodes in the heap its height is Θ(lg n).

Adding an element to the heap from the top:

• let’s assume that A[1 . . . n] is oth-
erwise a heap, except that the
heap property does not hold for
the root of the heap tree

– in other words A[1] < A[2] or
A[1] < A[3]

12

1098

3

4
5 6 7

2

1

15

147

5

9

8 10

2 7

TIE-20106 76

• the problem can be moved
downwards in the tree by se-
lecting the largest of the root’s
children and swapping it with
the root

– in order to maintain the heap
property the largest of the
children needs to be chosen -
it is going to become the par-
ent of the other child

12

1098

3

4
5 6 7

2

1

9

7 14

5

108

15

72

• the same can be done to the
subtree, whose root thus turned
problematic and again to its
subtree etc. until the problem
disappears
– the problem is solved for sure

once the execution reaches
a leaf
⇒ the tree becomes a heap

12

1098

3

4
5 6 7

2

1

14

7

5

10

15

89

72

TIE-20106 77

The same is pseudocode
HEAPIFY(A, i) (i is the index where the element might be too small)
1 repeat (repeat until the heap is fixed)
2 old_i := i (store the value of i)
3 l := LEFT(i)
4 r := RIGHT(i)
5 if l ≤ A.heapsize and A[l] > A[i] then (the left child is larger than i)
6 i := l
7 if r ≤ A.heapsize and A[r] > A[i] then (right child is even larger)
8 i := r
9 if i ̸= old_i then (if a larger child was found...)
10 exchange A[old_i] ↔ A[i] (...move the problem downwards)
11 until i = old_i (if the heap is already fixed, exit)

• The execution is constant time if the condition on line 11 is
true the first time it is met: Ω(1).

• In the worst case the new element needs to be moved all
the way down to the leaf.
⇒ The running time is O(h) = O(lg n).

TIE-20106 78

Building a heap
• the following algorithm converts an array into a heap:
BUILD-HEAP(A)

1 A.heapsize := A.length (the heap is built out of the entire array)
2 for i := ⌊A.length/2⌋ downto 1 do (scan through the lower half of the array)
3 HEAPIFY(A, i) (call Heapify)

• The array is scanned from the end towards the beginning
and HEAPIFY is called for each node.
– before calling HEAPIFY the heap property always holds for

the subtree rooted at i except that the element in i may
be too small

– subtrees of size one don’t need to be fixed as the heap
property trivially holds

– after HEAPIFY(A, i) the subtree rooted at i is a heap
⇒ after HEAPIFY(A, 1) the entire array is a heap

TIE-20106 79

• BUILD-HEAP executes the for-loop ⌊n2⌋ times and HEAPIFY is
Ω(1) and O(lg n) so
– the best case running time is ⌊n2⌋ · Ω(1) + Θ(n) = Ω(n)

– the program never uses more than
⌊n2⌋ ·O(lg n) + Θ(n) = O(n lg n)

• The worst-case running time we get this way is however too
pessimistic:
– HEAPIFY is O(h), where h is the height of the heap tree
– as i changes the height of the tree changes

level h executions times of HEAPIFY
lowest 0 0
2nd 1 ⌊n4⌋
3rd 2 ⌊n8⌋
...
topmost ⌊lg n⌋ 1

– thus the worst case runnign time is n
4 · 1 +

n
8 · 2 +

n
16 · 3 + · · · =

n
2 ·

∑∞
i=1

i
2i
= n

2 · 2 = n ⇒ O(n)

⇒ the running time of BUILD-HEAP is always Θ(n)

TIE-20106 80

Sorting with a heap

The following algorithm can be used to sort the contents of
the array efficiently:
HEAPSORT(A)

1 BUILD-HEAP(A) (convert the array into a heap)
2 for i := A.length downto 2 do (scan the array from the last to the first element)
3 exchange A[1] ↔ A[i] (move the heap’s largest element to the end)
4 A.heapsize := A.heapsize − 1 (move the largest element outside the heap)
5 HEAPIFY(A, 1) (fix the heap, which is otherwise fine...)

(... except the first element may be too small)

Let’s draw a picture of the situation:
• first the array is converted into a

heap
• it’s easy to see from the exam-

ple, that the operation is not too
laborous
– the heap property is obviously

weaker than the order

9 12 8 14 7 15

9

9

9

12

12

12

8

8

8

7

7

7

14

14

14

15

15

15

TIE-20106 81

• the picture shows how the sorted
range at the end of the array gets
larger until the entire array is sorted

• the heap property is fixed each
time the sorted range gets larger

• the fixing process seems complex in
such a small example
– the fixing process doesn’t take a

lot of steps even with large ar-
rays, only a logarithmic amount

7814 9 12 15

15

15

15

15

15

12 8 7914

7 14

14

15

9 12 871415

8 14 9 12 7

14

14

14

14

12

12

12

12

79 8

9

9

7 8

8 7

87 9

14

12 9 8

12 7 9 8

8 7912

12 147 8 9

15

15

15

15

TIE-20106 82

The running time of HEAPSORT consists of the following:
• BUILD-HEAP on line 1 is executed once: Θ(n)
• the contents of the for-loop is executed n - 1 times

– operations on lines 3 and 4 are constant time
– HEAPIFY uses Ω(1) and O(lg n)

⇒ in total Ω(n) and O(n lg n)

• the lower bound is exact
– if all the elements have the same value the heap doesn’t

need to be fixed at all and HEAPIFY is always constant
time

• the upper bound is also exact
– proving this is more difficult and we find the upcoming

result from the efficiency of sorting by counting sufficient

Note! The efficiency calculations abowe assume that the data
structure used to store the heap provides a constant time
indexing.
• Heap is worth using only when this is true

TIE-20106 83

Advantages and disadvantages of HEAPSORT

Advantages:
• sorts the array in place
• never uses more than Θ(n lg n) time

Disadvantages:
• the constant coefficient in the running time is quite large
• instability

– elements with the same value don’t maintain their order

TIE-20106 84

4.2 Priority queue
A priority queue is a data structure for maintaining a set S of
elements, each associated with a key value. The following
operations can be performed:
• INSERT(S, x) inserts the element x into the set S
• MAXIMUM(S) returns the element with the largest key

– if there are several elements with the same key, the
operation can choose any one of them

• EXTRACT-MAX(S) removes and returns the element with the
largest key

• alternatively the operations MINIMUM(S) and EXTRACT-MIN(S)
can be implemented
– there can be only the maximum or only the minimun

operations implemented in the same queue

TIE-20106 85

Priority queues can be used widely
• prioritizing tasks in an operating system

– new tasks are added with the command INSERT

– as the previous task is completed or interrupted the next
one is chosen with EXTRACT-MAX

• action based simulation
– the queue stores incoming (not yet simulated) actions
– the key is the time the action occurs
– an action can cause new actions
⇒ they are added to the queue with INSERT

– EXTRACT-MIN gives the next simulated action
• finding the shortest route on a map

– cars driving at constant speed but choosing different
routes are simulated until the first one reaches the
destination

– a priority queue is needed in practise in an algorithm for
finding shortest paths, covered later

TIE-20106 86

In practise, a priority queue could be implemented with an
unsorted or sorted array, but that would be inefficient

• the operations MAXIMUM and EXTRACT-MAX are slow in an
unsorted array

• INSERT is slow in a sorted array

A heap can be used to implement a priority queue efficiently
instead.

• The elements of the set S are stored in the heap A.
• MAXIMUM(S) is really simple and works in Θ(1) running-time
HEAP-MAXIMUM(A)

1 if A.heapsize < 1 then (there is no maximum in an empty heap)
2 error “heap underflow”
3 return A[1] (otherwise return the first element in the array)

TIE-20106 87

• EXTRACT-MAX(S) can be implemented by fixing the heap
after the extraction with HEAPIFY.

• HEAPIFY dominates the running-time of the algorithm: O(lg n).
HEAP-EXTRACT-MAX(A)

1 if A.heapsize < 1 then (no maximum in an empty heap)
2 error “heap underflow”
3 max := A[1] (the largest element is at the first index)
4 A[1] := A[A.heapsize] (make the last element the root)
5 A.heapsize := A.heapsize − 1 (decrement the size of the heap)
6 HEAPIFY(A, 1) (fix the heap)
7 return max

TIE-20106 88

• INSERT(S, x) adds a new element into the heap by making it
a leaf and then by lifting it to its correct height based on its
size
– is works like HEAPIFY, but from bottom up
– in the worst-case, the leaf needs to be lifted all the way

up to the root: running-time O(lg n)

HEAP-INSERT(A, key)
1 A.heapsize := A.heapsize + 1 (increment the size of the heap)
2 i := A.heapsize (start from the end of the array)
3 while i > 1 and A[PARENT(i)] < key do (continue until the root or ...)

(... or a parent with a larger value is reached)
4 A[i] := A[PARENT(i)] (move the parent downwards)
5 i := PARENT(i) (move upwards)
6 A[i] := key (place the key into its correct location)

⇒ Each operation in the priority queue can be made O(lg n)
by using a heap.

TIE-20106 89

A priority queue can be thought of as an abstract data type
which stores the data (the set S) and provides the operations
INSERT, MAXIMUM,EXTRACT-MAX.

• the user sees the names and the purpose of the operations
but not the implementation

• the implementation is encapsulated into a package (Ada),
a class (C++) or an independent file (C)

⇒ It’s easy to maintain and change the implementation when
needed without needing to change the code using the
queue.

TIE-20106 90

4.3 QUICKSORT

This chapter covers a very efficient sorting algorithm
QUICKSORT.

Like MERGE-SORT, QUICKSORT is a divide and conquer
algorithm. However, with MERGE-SORT the division is simple and
combining the results is complex, with QUICKSORT it’s vice versa

The division of the problem into smaller subproblems
• Select one of the elements in the array as a pivot, i.e. the

element which partitions the array.
• Change the order of the elements in the array so that all

elements smaller or equal to the pivot are placed before it
and the larger elements after it.

• Continue dividing the upper and lower halves into smaller
subarrays, until the subarrays contain 0 or 1 elements.

TIE-20106 91

Smaller subproblems:
• Subarrays of the size 0 and 1 are already sorted

Combining the sorted subarrays:

• The entire (sub) array is automatically sorted when its upper
and lower halves are sorted.
– all elements in the lower half are smaller than the

elements in the upper half, as they should be

QUICKSORT-algorithm
QUICKSORT(A, p, r)
1 if p < r then (do nothing in the trivial case)
2 q := PARTITION(A, p, r) (partition in two)
3 QUICKSORT(A, p, q − 1) (sort the elements smaller than the pivot)
4 QUICKSORT(A, q + 1, r) (sort the elements larger than the pivot)

TIE-20106 92

The partition algorithm rearranges the subarray in place
PARTITION(A, p, r)

1 x := A[r] (choose the last element as the pivot)
2 i := p− 1 (use i to mark the end of the smaller elements)
4 for j := p to r − 1 do (scan to the second to last element)
6 if A[j] ≤ x (if A[j] goes to the half with the smaller elements...)
9 i := i + 1 (... increment the amount of the smaller elements...)
12 exchange A[i] ↔ A[j] (... and move A[j] there)
12 exchange A[i + 1] ↔ A[r] (place the pivot between the halves)
13 return i + 1 (return the location of the pivot)

How fast is PARTITION?

• The for-loop is executed n - 1 times when n is r - p
• All other operations are constant time.

⇒ The running-time is Θ(n).

TIE-20106 93

Determining the running-time of QUICKSORT is more difficult.

We’ll analyze in the same way we did with MERGE-SORT

• As all the operations of QUICKSORT except PARTITION and the
recursive call are constant time, let’s concentrate on the
time used by the instances of PARTITION.

1 1

1 1
1

n

n

n

1

1

11

12 2
n − n − 1

n − n − 1

TIE-20106 94

• The total time is the sum of the running times of the nodes in
the picture abowe.

• The execution is constant time for an array of size 1.
• For the other the execution is linear to the size of the array.
⇒ The total time is Θ(the sum of the numbers of the nodes).

TIE-20106 95

Worst-case running time
• The number of a node is always smaller than the

number of its parent, since the pivot is already in
its correct location and doesn’t go into either of
the sorted subarrays
⇒ there can be atmost n levels in the tree

• the worst case is realized when the smallest or the
largest element is always chosen as the pivot
– this happens, for example, with an array already

sorted
• the sum of the node numbers is n + n - 1 + · · · + 2 +

1
⇒ the running time of QUICKSORT is O(n2)

n−1

n−2

k

2

1

n

TIE-20106 96

The best-case is when the array is always divided evenly in half.

• The picture below shows how the subarrays get smaller.
– The grey boxes mark elements already in their correct

position.
• The amount of work on each level is in Θ(n).
• If the pivot would be kept either in the half with the smaller

elements or with the larger elements the situation would be
the same as in MERGE-SORT (page ??).
– a pessimistic estimate on the height of the execution tree

is in the best-case ⇒ O(lg n)

⇒ The upper limit for the best-case efficiency is O(n lg n).

O(lg n)

O(n)

O(n)

O(n)

O(n)

O(n)

TIE-20106 97

The best-case and the worst-case efficiencies of QUICKSORT
differ significantly.

• It would be interesting to know the average-case
running-time.

• Analyzing it is beyond the goals of the course but it has
been shown that if the data is evenly distributed its average
running-time is Θ(n lg n).

• Thus the average running-time is quite good.

An unfortunate fact with QUICKSORT is that its worst-case
efficiency is poor and in practise the worst-case situation is
quite probable.
• It is easy to see that there can be situations where the data

is already sorted or almost sorted.
⇒ A way to decrease the risk of the systematic occurence of
the worst-case situation’s likelyhood is needed.

Randomization has proved to be quite efficient.

TIE-20106 98

Advantages and disadvantages of QUICKSORT

Advantages:
• sorts the array very efficiently in average

– the average-case running-time is Θ(n lg n)

– the constant coefficient is small
• requires only a constant amount of extra memory
• if well-suited for the virtual memory environment

Disadvantages:
• the worst-case running-time is Θ(n2)

• without randomization the worst-case input is far too
common

• the algorithm is recursive
⇒ the stack uses extra memory

• instability

TIE-20106 99

4.4 Randomization
Randomization is one of the design techniques of algorithms.

• A pathological occurence of the worst-case inputs can be
avoided with it.

• The best-case and the worst-case running-times don’t
usually change, but their likelyhood in practise decreases.

• Disadvantageous inputs are exactly as likely as any other
inputs regardless of the original distribution of the inputs.

• The input can be randomized either by randomizing it
before running the algorithm or by embedding the
randomization into the algorithm.

– the latter approach usually gives better results
– often it is also easier than preprocessing the input.

TIE-20106 100

• Randomization is usually a good idea when
– the algorithm can continue its execution in several ways
– it is difficult to see which way is a good one
– most of the ways are good
– a few bad guesses among the good ones don’t make

much damage
• For example, QUICKSORT can choose any element in the

array as the pivot
– besides the almost smallest and the almost largest

elements, all other elements are a good choise
– it is difficult to guess when making the selection whether

the element is almost the smallest/largest
– a few bad guesses now and then doesn’t ruin the

efficiency of QUICKSORT

⇒ randomization can be used with QUICKSORT

TIE-20106 101

With randomization an algorithm RANDOMIZED-QUICKSORT
which uses a randomized PARTITION can be written
• A[r] is not always chosen as the pivot. Instead, a random

element from the entire subarray is selected as the pivot
• In order to keep PARTITION correct, the pivot is still placed in

the index r in the array
⇒ Now the partition is quite likely even regardless of the
input and how the array has earlier been processed.

RANDOMIZED-PARTITION(A, p, r)
1 i := RANDOM(p, r) (choose a random element as pivot)
2 exchange A[r] ↔ A[i] (store it as the last element)
3 return PARTITION(A, p, r) (call the normal partition)

RANDOMIZED-QUICKSORT(A, p, r)
1 if p < r then
2 q := RANDOMIZED-PARTITION(A, p, r)
3 RANDOMIZED-QUICKSORT(A, p, q − 1)
4 RANDOMIZED-QUICKSORT(A, q + 1, r)

TIE-20106 102

The running-time of RANDOMIZED-QUICKSORT is Θ(n lg n) on
average just like with normal QUICKSORT.
• However, the assumption made in analyzing the

average-case running-time that the pivot-element is the
smallest, the second smallest etc. element in the subarray
with the same likelyhood holds for RANDOMIZED-QUICKSORT
for sure.

• This holds for the normal QUICKSORT only if the data is evenly
distributed.

⇒ RANDOMIZED-QUICKSORT is better than the normal QUICKSORT
in general

QUICKSORT can be made more efficient with other methods:
• An algorithm efficient with small inputs (e.g.INSERTIONSORT)

can be used to sort the subarrays.
– they can also be left unsorted and in the end sort the

entire array with INSERTIONSORT

• The median of three randomly selected elements can be
used as the pivot.

TIE-20106 103

• It’s always possible to use the median as the pivot.

The median can be found efficiently with the so called lazy
QUICKSORT.
• Divide the array into a “small elements” lower half and a

“large elements” upper half like in QUICKSORT.
• Calculate which half the ith element belongs to and

continue recursively from there.
• The other half does not need to be processed further.

RANDOMIZED-SELECT(A, p, r, i)
1 if p = r then (if the subarray is of size 1...)
2 return A[p] (... return the only element)
3 q := RANDOMIZED-PARTITION(A, p, r) (divide the array into two halves)
4 k := q − p + 1 (calculate the number of the pivot)
5 if i = k then (if the pivot is the ith element in the array...)
6 return A[q] (...return it)
7 else if i < k then (continue the search from the small ones)
8 return RANDOMIZED-SELECT(A, p, q − 1, i)
9 else (continue on the large ones)
10 return RANDOMIZED-SELECT(A, q + 1, r, i− k)

TIE-20106 104

The lower-bound for the running-time of RANDOMIZED-SELECT:
• Again everything else is constant time except the call of

RANDOMIZED-PARTITION and the recursive call.
• In the best-case the pivot selected by

RANDOMIZED-PARTITION is the ith element and the execution
ends.

• RANDOMIZED-PARTITION is run once for the entire array.
⇒ The algorithm’s running-time is Ω(n).

The upper-bound for the running-time of RANDOMIZED-SELECT:

• RANDOMIZED-PARTITION always ends up choosing the smallest
or the largest element and the ith element is left in the
larger half.

• the amount of work is decreased only by one step on each
level of recursion.

⇒ The running-time of the algorithm is O(n2).

TIE-20106 105

The average-case running-time is however O(n).

The algorithm is found in STL under the name nth_element.

The algorithm can also be made to always work in linear time.

TIE-20106 106

4.5 Other sorting algorithms
All sorting algorithms covered so far have been based on
comparisons.

• They determine the correct order only based on comparing
the values of the elements to eachother.

It is possible to use information other than comparisons to sort
the data.

Sorting by counting

Let’s assume that the value range of the keys is small, atmost
on the same scale with the amount of the elements.

• For simplicity we assume that the keys of the elements are
from the set {1, 2, . . . , k}, and k = O(n).

• For each key the amount of elements with the given key is
calculated.

• Based on the result the elements are placed directly into
their correct positions.

TIE-20106 107

COUNTING-SORT(A,B, k)
1 for i := 1 to k do
2 C[i] := 0 (initialize a temp array C with zero)
3 for j := 1 to A.length do
4 C[A[j].key] := C[A[j].key] + 1 (calculate the amount of elements with key = i)
5 for i := 2 to k do
6 C[i] := C[i] + C[i− 1] (calculate how many keys ≤ i)
7 for j := A.length downto 1 do (scan the array from end to beginning)
8 B[C[A[j].key]] := A[j] (place the element into the output array)
9 C[A[j].key] := C[A[j].key]− 1 (the next correct location is a step to the left)

The algorithm places the elements to their correct location in
a reverse order in order to quarantee stability.

Running-time:
• The first and the third for-loop take Θ(k) time.
• The second and the last for-loop take Θ(n) time.
⇒ The running time is Θ(n + k).
• If k = O(n), the running-time is Θ(n).

TIE-20106 108

• All basic operations are simple and there are only a few of
them in each loop so the constant coefficient of the
running-time is small.

COUNTING-SORT is not worth using if k ≫ n.
• The memory consumption of the algorithm is Θ(k).
• Usually k ≫ n.

– for example: all possible social security numbers ≫ the
social security numbers of TUT personnel

Sometimes there is a need to be able to sort based on a key
with several parts.
• the list of exam results first based on the department and

then into an alphabetical order
• dates first based on the year, then the month and then the

day
• a deck of cards first based on the suit and then according

to the numbers

TIE-20106 109

The different criteris are taken into account as follows
• The most significant criterion according to which the values

of the elements differs determines the result of the
comparison.

• If the elements are equal with each criteria they are
considered equal.

The problem can be solved with a comparison sort (e.g. by
using a suitable comparison operator in QUICKSORT)
• example: comparing dates
DATE-COMPARE(x, y)

1 if x.year < y.year then return “smaller”
2 if x.year > y.year then return “greater”
3 if x.month < y.month then return “smaller”
4 if x.month > y.month then return “greater”
5 if x.day < y.day then return “smaller”
6 if x.day > y.day then return “greater”
7 return “equal”

TIE-20106 110

Sometimes it makes sense to handle the input one criterion at
a time.
• For example it’s easiest to sort a deck of cards into four piles

based on the suits and then each suit separately.

The range of values in the significant criteria is often small
when compared to the amount of element and
COUNTING-SORT can be used.

TIE-20106 111

There are two different algorithms available for sorting with
multiple keys.
• LSD-RADIX-SORT

– the array is sorted first according to the least significant
digit, then the second least significant etc.

– the sorting algorithm needs to be stable - otherwise the
array would be sorted only according to the most
significant criterion

– COUNTING-SORT is a suitable algorithm
– comparison algorithms are not worth using since they

would sort the array with approximately the same
amount of effort directly at one go

LSD-RADIX-SORT(A, d)
1 for i := 1 to d do (run through the criteria, least significant first)
2 ▷ sort A with a stable sort according to criterion i

TIE-20106 112

• MSD-RADIX-SORT

– the array is first sorted according to the most significant
digit and then the subarrays with equal keys according to
the next significant digit etc.

– does not require the sorting algorithm to be stable
– usable when sorting character strings of different lengths
– checks only as many of the sorting criterions as is needed

to determine the order
– more complex to implement than LSD-RADIX-SORT
⇒ the algorithm is not given here

The efficiency of RADIX-SORT when using COUNTING-SORT:
• sorting according to one criterion: Θ(n + k)

• amount of different criteria is d
⇒ total efficiency Θ(dn + dk)

• k is usually constant
⇒ total efficiency Θ(dn), or Θ(n), if d is also constant

TIE-20106 113

RADIX-SORT appears to be a O(n) sorting algorithm with certain
assumptions.

Is is better than the comparison sorts in general?

When analyzing the efficiency of sorting algorithms it makes
sense to assume that all (or most) of the elements have
different values.

• For example INSERTION-SORT is O(n), if all elements are equal.
• If the elements are all different and the size of value range

of one criterion is constant k, kd ≥ n ⇒ d ≥ logk n = Θ(lg n)

⇒ RADIX-SORT is Θ(dn) = Θ(n lg n), if we assume that the
element values are mostly different from each other.

RADIX-SORT is asymptotically as slow as other good sorting
algorithms.
• By assuming a constant d, RADIX-SORT is Θ(n), but then with

large values of n most elements are equal to eachother.

TIE-20106 114

Advantages and disadvantages of RADIX-SORT

Advantages:
• RADIX-SORT is able to compete in efficiency with QUICKSORT

for example
– if the keys are 32-bit numbers and the array is sorted

according to 8 bits at a time
⇒ k = 28 and d = 4
⇒ COUNTING-SORT is called four times

• RADIX-SORT is well suited for sorting according to keys with
multiple parts when the parts of the key have a small value
range.
– e.g. sorting a text file according to the characters on the

given columns (cmp. Unix or MS/DOS sort)

Disadvantages:
• COUNTING-SORT requires another array B of n elements

where it builds the result and a temp array of k elements.
⇒ It requires Θ(n) extra memory which is significantly larger
than for example with QUICKSORT and HEAPSORT.

TIE-20106 115

Bucket sort

Let’s assume that the keys are within a known range of values
and the key values are evenly distributed.
• Each key is just as probable.
• For the sake of an example we’ll assume that the key values

are between zero and one.
• Let’s use n buckets B[0] . . . B[n− 1].
BUCKET-SORT(A)

1 n := A.length
2 for i := 1 to n do (go through the elements)
3 INSERT(B[⌊n · A[i]⌋], A[i]) (throw the element into the correct bucket)
4 k := 1 (start filling the array from index 1)
5 for i := 0 to n− 1 do (go through the buckets)
6 while B[i] not empty do (empty non-empty buckets...)
7 A[k] := EXTRACT-MIN(B[i]) (... by moving the elements, smallest first...)
8 k := k + 1 (... into the correct location in the result array)

TIE-20106 116

Implementation of the buckets:
• Operations INSERT and EXTRACT-MIN are needed.
⇒ The bucket is actually a priority queue.

• The size of the buckets varies a lot.
– usually the amount of elements in the bucket is ≈ 1
– however it is possible that every element end up in the

same bucket
⇒ an implementation that uses a heap would require Θ(n)
for each bucket Θ(n2) in total

• On the other hand, the implementation does not need to
be very efficient for large buckets since they are rare.
⇒ In practise the buckets should be implemented as lists.
– INSERT links the incoming element to its correct location in

the list, Θ(list length) time is used
– EXTRACT-MIN removes and returns the first element in the

list, Θ(1) time is used

TIE-20106 117

the average efficiency of BUCKET-SORT:
• We assumed the keys are evenly distributed.
⇒ On average one element falls into each bucket and very
rarely a significantly larger amount of elements fall into the
same bucket.

• The first for-loop runs through all of the elements, Θ(n).
• The second for-loop runs through the buckets, Θ(n).
• The while-loop runs through all of the elements in all of its

iterations in total once, Θ(n).
• INSERT is on average constant time, since there is on

average one element in the bucket.
• EXTRACT-MIN is constant time.
⇒ The total running-time is Θ(n) on average.

In the slowest case all elements fall into the same bucket in an
ascending order.
• INSERT takes a linear amount of time
⇒ The total running-time is Θ(n2) in the worst-case.

TIE-20106 118

4.6 How fast can we sort?

Sorting an array actually creates the per-
mutation of its elements where the origi-
nal array is completely sorted.
• If the elements are all different, the

permutation is unique. ⇒ Sorting
searches for that permutation from the
set of all possible permutations.

31 41 59 26 58 41

3126 41 58 5941

For example the functionality of INSERTION-SORT, MERGE-SORT,
HEAPSORT and QUICKSORT is based on comparisons between
the elements.
• Information about the correct permutation is collected only

by comparing the elements together.
What would be the smallest amount of comparisons that is
enough to find the correct permutation for sure?

• An array of n elements of different values has 1 · 2 · 3 · . . . · n
i.e. n! permutations.

TIE-20106 119

• So many comparisons need to be made that the only
correct alternative gets chosen from the set.

• Each comparison A[i] ≤ A[j] (or A[i] < A[j]) divides the
permutations into two groups: those where the order of A[i]
and A[j] must be switched and those where the order is
correct so...

– one comparison in enough to pick the right alternative
from atmost two

– two comparisons in enough to pick the right one from
atmost four

– . . .
– k comparisons in enough to pick the right alternative from

atmost 2k

⇒ choosing the right one from x alternatives requires at
least ⌈lg x⌉ comparisons

• If the size of the array is n, there are n! permutations
⇒ At least ⌈lg n!⌉ comparisons is required
⇒ a comparison sort algorithm needs to use Ω(⌈lg n!⌉) time.

TIE-20106 120

How large is ⌈lg n!⌉ ?

• ⌈lg n!⌉ ≥ lg n! = ∑n
k=1 lg k ≥ ∑n

k=⌈n2⌉
lg n

2 ≥
n
2 · lg

n
2 =

1
2n lg n− 1

2n =

Ω(n lg n)− Ω(n) = Ω(n lg n)

• on the other hand ⌈lg n!⌉ < n lg n + 1 = O(n lg n)

⇒ ⌈lg n!⌉ = Θ(n lg n)

Every comparison sort algorithm needs to use Ω(n lg n) time in
the slowest case.

• On the other hand HEAPSORT and MERGE-SORT are O(n lg n)
in the slowest case.
⇒ In the slowest case sorting based on comparisons
between elements is possible in Θ(n lg n) time, but no faster.

• HEAPSORT and MERGE-SORT have an optimal asymptotic
running-time in the slowest case.

• Sorting is for real asymptotically more time consuming than
finding the median calue, which can be done in the slowest
possible case in O(n).

TIE-20106 121

4.7 Hash table
The basic idea behind hash tables is to reduce the range of
possible key values in a dynamic set by using a hash function h
so that the keys can be stored in an array.

• the advantatage of an array is the efficient, constant-time
indexing it provides

Reducing the range of the keys creates a problem: collisions.

• more than one element can hash into the same slot in the
hash table

TIE-20106 122

The most common way to solve the problem is called
chaining.

• all the elements that hash to the same slot are put into a
linked list

• there are other alternatives
– in open addressing the element is put into a secondary

slot if the primary slot is unavailable
– in some situations the range of key values is so small, that

it doesn’t need to be reduced and therefore there are no
collisions either

– this direct-access table is very simple and efficient
– this course covers hashing with chaining only

TIE-20106 123

The picture below shows a chained hash table, whose keys
have been hashed based on the first letter according the the
table given.

h(k) first letter
0 H P X
1 A I Q Y
2 B J R Z
3 C K S Ä
4 D L T Ö
5 E M U Å
6 F N V
7 G O W

Is this a good hash?
• No. Let’s see why.

TIE-20106 124

The chained hash table provides the dictionary operations
only, but those are very simple:
CHAINED-HASH-SEARCH(T, k)

▷ find the element with key k from the list T [h(k)]

CHAINED-HASH-INSERT(T, x)
▷ add x to the beginning of the list T [h(x→key)]

CHAINED-HASH-DELETE(T, x)
▷ remove x from the list T [h(x→key)]

TIE-20106 125

Running-times:
• addition: Θ(1)
• search: worst-case Θ(n)

• removal: if the list is doubly-linked Θ(1); with a singly linked list
worst-case Θ(n), since the predecessor of the element
under removal needs to be searched from the list
– in practise the difference is not significant since usually

the element to be removed needs to be searched from
the list anyway

The average running-times of the operations of a chained
hash table depend on the lengths of the lists.

TIE-20106 126

• in the worst-case all elements end up in the same list and
the running-times are Θ(n)

• to determine the average-case running time we’ll use the
following:
– m = size of the hash table
– n = amount of elements in the table
– α = n

m = load factor i.e. the average length of the list

• in addition, in order to evaluate the average-case
efficiency an estimate on how well the hash function h
hashes the elements is needed

– if for example h(k) = the 3 highest bits in the name, all
elements hash into the same list

– it is often assumed that all elements are equally likely to
hash into any of the slots

– simple uniform hashing
– we’ll also assume that evaluating h(k) is Θ(1)

TIE-20106 127

• if an element that is not in the table is searched for, the
entire list needs to be scanned through
⇒ on average α elements need to be investigated
⇒ the running-time is on average Θ(1 + α)

• if we assume that any of the elements in the list is the key
with the same likelyhood, on average half of the list needs
to be searched through in the case where the key is found
in the list
⇒ the running-time is Θ(1 + α

2) = Θ(1 + α) on average

• if the load factor is kept under some fixed constant
(e.g. α < 50 %), then Θ(1 + α) = Θ(1)

⇒ all operations of a chained hash table can be
implemented in Θ(1) running-time on average

– this requires that the size of the hash table is around the
same as the amount of elements stored in the table

TIE-20106 128

When evaluating the average-case running-time we assumed
that the hash-function hashes evenly. However, it is in no way
obvious that this actually happens.

The quality of the hash function is the most critical factor in the
efficiency of the hash table.

Properties of a good hash function:

• the hash function must be deterministic
– otherwise an element once placed into the hash table

may never be found!
• despite this, it would be good that the hash function is as

“random” as possible
– 1

m of the keys should be hashed into each slot as closely
as possible

TIE-20106 129

• unfortunately implementing a completely evenly hashing
hash function is most of the time impossible
– the probability distribution of the keys is not usually known
– the data is usually not evenly distributed

* almost any sensible hash function hashes an evenly
distributed data perfectly

• Often the hash function is created so that it is independent
of any patterns occuring in the input data, i.e. such
patterns are broken by the function

– for example, single letters are not investigated when
hashing names but all the bits in the name are taken into
account

TIE-20106 130

• two methods for creating hash functions that usually
behave well are introduced here

• lets assume that the keys are natural numbers 0, 1, 2, . . .
– if this is not the case the key can be interpreted as a

natural number
– e.g. a name can be converted into a number by

calculating the ASCII-values of the letters and adding
them together with appropriate weights

TIE-20106 131

Creating hash functions with the division method is simple and
fast.

• h(k) = k mod m

• it should only be used if the value of m is suitable
• e.g. if m = 2b for some b ∈ N = {0, 1, 2, . . .}, then

h(k) = k’s b lowest bits

⇒ the function doesn’t even take a look at all the bits in k
⇒ the function probably hashes binary keys poorly

TIE-20106 132

• for the same reason, values of m in the format m = 10b should
be avoided with decimal keys

• if the keys have been formed by interpreting a character
string as a value in the 128-system, then m = 127 is a poor
choise, as then all the permutations of the same string end
up into the same slot

• prime numbers are usually good choises for m, provided
they are not close to a power of two
– e.g. ≈ 700 lists is needed ⇒ 701 is OK

• it’s worth checking with a small “real” input data set
whether the function hashes efficiently

TIE-20106 133

The multiplication method for creating hash functions doesn’t
have large requirements for the values of m.
• the constant A is chosen so that 0 < A < 1

• h(k) = ⌊m(kA− ⌊kA⌋)⌋
• if m = 2b, the word length of the machine is w, and k and
2w · A fit into a single word, then h(k) can be calculated
easily as follows:

h(k) = ⌊(((2
w · A) · k) mod 2w)

2w−b
⌋

• which value should be chosen for A?
– all of the values of A work at least somehow
– the rumor has it that A ≈

√
5−1
2 often works quite well

TIE-20106 134

4.8 B-trees
B-trees are rapidly branching search trees that are designed
for storing large dynamic sets on a disk

• the goal is to keep the number of search/write operations
as small as possible

• all leaves have the same depth
• one node fills one disk unit as closely as possible
⇒ B-tree often branches rapidly: each node has tens,
hundreds or thousands of children
⇒ B-trees are very shallow in practise

• the tree is kept balanced by alternating the amount of the
node’s children between t, . . . , 2t for some t ∈ N , t ≥ 2

– each internal node except the root always has at least 1
2

children from the maximum amount

TIE-20106 135

The picture shows how the keys of a B-tree divide the search
area.

Searching in a B-tree is done in the same way as in an ordinary
binary search tree.
• travel from the root towards the leaves
• in each node, choose the branch where the searched

element must be in - there are just much more brances

TIE-20106 136

Inserting an element into a B-tree
• travel from the root to a leaf and on the way split each full

node into half
⇒ when a node is reached, its parent is not full

• the new key is added into a leaf
• if the root is split, a new root is created and the halves of the

old root are made the children of the new root
⇒ B-tree gets more height only by splitting roots

• a single pass down the tree is needed and no passes
upwards

A node in a B-tree is split by making room for one more key in
the parent and the median key in the node is then lifted into
the parent.

The rest of the keys are split around the median key into a
node with the smaller keys and a node with the larger keys.

TIE-20106 137

TIE-20106 138

Deleting a key from a B-tree is a similar operation to the
addition.

• travel from the root to a leaf and always before entering a
node make sure there is at least the mimimun amount + 1
keys in it
– this quarantees that the amount of the keys is kept legal

although one is removed
• once the searched key is found, it is deleted and if

necessary the node in combined with either of its siblings

– this can be done for sure, since the parent node has at
least one extra key

• if the root of the end result has only one child, the root is
removed and the child is turned into the new root

	Introduction
	Why?

	Terminology and conventions
	Goals of the course
	Terminology
	Insertion-Sort
	Implementing algorithms

	Efficiency and algorithm design
	Asymptotic notations
	Decrease and conquer
	Divide and conquer
	Quicksort
	Partition
	Randomization
	Randomized-Partition
	Randomized-Quicksort
	Randomized-Select

	Sorting algorithms
	Sorting with a heap
	Binary trees
	Heap
	Heapify
	Build-Heap
	Sorting with a heap
	Heapsort
	Priority queue
	Heap-Maximum
	Heap-Extract-Max
	Heap-Insert
	Quicksort
	Partition
	Randomization
	Randomized-Partition
	Randomized-Quicksort
	Randomized-Select
	Other sorting algorithms
	Sorting by counting
	Counting-Sort
	Date-Compare
	Bucket-Sort
	How fast can we sort?
	Hash table
	Chained-Hash-Search
	Chained-Hash-Insert
	Chained-Hash-Delete
	B-trees

