
Amortized performance and
std::vector's memory

management

COMP.CS.300 Data structures and algorithms 1

Matti Rintala (matti.rintala@tuni.fi)

STL vector memory
management

•Vector reserves a
continuous memory block
for its elements

•What to do when it needs
more space?

1

•Attempt 1: reserve new
memory block with as
much more space as you
need, copy old elements
there

1 2

1 2 3

1 2 3 4

1 2 3 4 5

STL vector memory
management

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

•Vector reserves a
continuous memory block
for its elements

•What to do when it needs
more space?

•Attempt 1: reserve new
memory block with as
much more space as you
need, copy old elements
there

STL vector memory
management

•Vector reserves a
continuous memory block
for its elements

•What to do when it needs
more space?

1

•Attempt 2: reserve twice
as large memory block,
copy old elements there

•Note: Some memory
remains unused!

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 4 5 6 7 8

STL vector memory
management

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 4 5 6 7 8

•Attempt 2: reserve twice
as large memory block,
copy old elements there

•Note: Some memory
remains unused!

•Vector reserves a
continuous memory block
for its elements

•What to do when it needs
more space?

Amortized tehokkuus

•Counts average performance of
operation sequences

•Cost of expensive rare operation can be
spread evenly on cheap operations

•E.g., append an element to vector:
– Individual insertion can be linear

(gets rarer and rarer)
– Insertions are still amortized

constant time (on average)

std::vector

•STL vector contains operations for
tweaking memory management

•vec.reserve(n): Reserves memory at
least for n elements, elements are still
not (yet) added

•vec.capacity(): Maximum number of
elements without new memory allocation

•vec.shrink_to_fit(): Move elements to
memory block that is just the right size

•(vec.erase() does not free memory!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

