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STL vector memory 
management

•Vector reserves a 
continuous memory block 
for its elements

•What to do when it needs 
more space?



1

•Attempt 1: reserve new 
memory block with as 
much more space as you 
need, copy old elements 
there
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•Attempt 2: reserve twice 
as large memory block, 
copy old elements there

•Note: Some memory 
remains unused!
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Amortized tehokkuus

•Counts average performance of   
operation sequences

•Cost of expensive rare operation can be 
spread evenly on cheap operations

•E.g., append an element to vector:
– Individual insertion can be linear 

(gets rarer and rarer)
– Insertions are still amortized 

constant time (on average)



std::vector

•STL vector contains operations for 
tweaking memory management

•vec.reserve(n): Reserves memory at 
least for n elements, elements are still 
not (yet) added

•vec.capacity(): Maximum number of 
elements without new memory allocation

•vec.shrink_to_fit(): Move elements to 
memory block that is just the right size

•(vec.erase() does not free memory!)
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