
Weighted graphs and their implementations in C++

Q: How does a weighted graph differ from an ordinary graph?

A: In a weighted graph each edge (x,y) has associated with it a weight w((x,y)), which is a
number.

Common interpretations of weights

- graph represents a road map and nodes are locations or intersections on the map: w((x,y))
can be the distance from x to y or the time required to get from x to y

- graph represents a project and the nodes are different tasks in the project: w((x,y)) is the
time it takes to complete the task x

- graph represents a pipe network under construction and the nodes represent junctions in the
pipe network: w((x,y)) can be the cost of constructing the pipe from x to y

Common use

- find the shortest/fastest/cheapest path from some node to some other node

- BFS assumes w((x,y)) = 1 for all edges

Example

Goal: shortest path from F to H.

One BFS solution: <F, D, H >

True solution: <F, A, C, B, H >

Implementation 1

For each node y adjacent to x, store pair <y, w((x,y)) >

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // ...

 std::vector<std::pair<Node*,Cost>> to_neighbours;
};

Suitable when

- only need to move forward along edges
- edges added or deleted infrequently
- only data associated with edge is cost (weight)

Implementation 2

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // ...

 // ...map, not set!
 std::unordered_map<Node*,Cost> to_neighbours;
};

Suitable when

- only need to move forward along edges
- edges added or deleted frequently
- only data associated with edge is cost (weight)

Implementation 3

struct Edge
{
 int cost;
 string name;
 // ...
};

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // ...

 // ...map, not set!
 std::unordered_map<Node*,Edge> to_neighbours;
};

Suitable when

- only need to move forward along edges
- edges added or deleted frequently
- there is much data associated with edge

Implementation 4

// In undirected graphs, egde data can be shared between directions
struct Edge
{
 int cost;
 string name;
 Hugedata data;
 // ... too much data or changing data
};

struct Node
{
 // All the data stored in the node
 int id;
 std::string name;
 // ...

 // ...map, not set!
 std::unordered_map<Node*,std::shared_ptr<Edge>> to_neighbours;
};

Suitable when

- only need to move forward along edges
- edges added or deleted frequently
- there is much data associated with edge
- the graph is undirected and we do not wish to keep two copies of the same edge

Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen-
EiMuutoksia 4.0 Kansainvälinen -lisenssillä. Tarkastele lisenssiä osoitteessa
http://creativecommons.org/licenses/by-nc-nd/4.0/.

tekijä: Frank Cameron

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

made by Frank Cameron

