

Bayes Rule

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - · Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - C: Coronavirus, F: fever

$$P(+c) = 0.00001$$

 $P(+f|+c) = 0.8$
 $P(+f|-c) = 0.01$ Example givens

$$P(+c|+f) = \frac{P(+f|+c)P(+c)}{P(+f)} = \frac{P(+f|+c)P(+c)}{P(+f|+c)P(+c) + P(+f|-c)P(-c)} = \frac{0.8 \times 0.00001}{0.8 \times 0.00001 + 0.01 \times 0.9999} \approx 0.0008$$

- Note: posterior probability of coronavirus still very small
- Note: you should still get fevers checked out! Why?

Quiz: Bayes' Rule $_{P(D|W)}$

• Given:

P(W)	
R	Р

IX.	Г
sun	0.8
rain	0.2

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

• What is P(W | dry)?

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: *P*(*G*)
 - Let's say this is uniform
 - Sensor reading model: $P(R \mid G)$
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g., $P(R = \text{yellow} \mid G = (1,1)) = 0.1$
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$

0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

Video of Demo Ghostbusters with Probability

Probabilistic Models

• Models describe how (a portion of) the world works

Models are always simplifications

- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

Independence

• Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

• We write:

$$X \perp \!\!\! \perp Y$$

- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

 $P_1(T, W)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

 $P_2(T,W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

• *N* fair, independent coin flips:

$P(X_1)$		
Н	0.5	
Т	0.5	

$P(X_2)$		
Н	0.5	
Т	0.5	

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

• Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$

• Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

• With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

• Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is redB: Bottom square is redG: Ghost is in the top
- Givens:

$$P(+g) = 0.5$$

 $P(-g) = 0.5$
 $P(+t \mid +g) = 0.8$
 $P(+t \mid -g) = 0.4$
 $P(+b \mid +g) = 0.4$
 $P(+b \mid -g) = 0.8$

P(T,B,G)	= P(G)	P(T G	P(B)	G
----------	--------	-------	------	---

T	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	-g	0.16
+t	-b	+g	0.24
+t	-b	-g	0.04
-t	+b	+g	0.04
-t	+b	-g	0.24
-t	-b	+g	0.06
-t	-b	-g	0.06

Naïve Bayes

- If all effects are conditionally independent given a single cause, the exponential size of knowledge representation is cut to linear
- A probability distribution is called a **naïve Bayes** (NB) model if all effects $E_1, ..., E_n$ are conditionally independent, given a single cause C
- The full joint probability distribution can be written as

$$\mathbf{P}(C, E_1, \dots, E_n) = \mathbf{P}(C) \prod_i \mathbf{P}(E_i \mid C)$$

- A simplifying assumption even in cases where the effect variables are not conditionally independent given the cause variable
- In practice, NB systems can work surprisingly well, even when the independence assumption is not true

