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Bayes’ Rule

• Two ways to factor a joint distribution over two variables:

• Dividing, we get:

• Why is this at all helpful?

• Lets us build one conditional from its reverse
• Often one conditional is tricky but the other one is simple
• Foundation of many systems we’ll see later (e.g. ASR, MT)

• In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule

• Example: Diagnostic probability from causal probability:

• Example:
• C: Coronavirus, F: fever

𝑃 +𝑐 = 0.00001
𝑃 +𝑓 +𝑐 = 0.8

𝑃 +𝑓 −𝑐 = 0.01
ቑ Example givens

𝑃 +𝑐 +𝑓 =
𝑃 +𝑓 +𝑐 𝑃(+𝑐)

𝑃(+𝑓)
=

𝑃 +𝑓 +𝑐 𝑃(+𝑐)

𝑃 +𝑓 +𝑐 𝑃 +𝑐 + 𝑃 +𝑓 −𝑐 𝑃(−𝑐)
=

0.8 × 0.00001

0.8 × 0.00001 + 0.01 × 0.9999
≈ 0.0008

• Note: posterior probability of coronavirus still very small
• Note: you should still get fevers checked out!  Why?
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Quiz: Bayes’ Rule
• Given:

• What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3
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Ghostbusters, Revisited
• Let’s say we have two distributions:

• Prior distribution over ghost location: 𝑃(𝐺)
• Let’s say this is uniform

• Sensor reading model: 𝑃(𝑅 | 𝐺)
• Given: we know what our sensors do
• 𝑅 = reading color measured at (1,1)
• E.g., 𝑃(𝑅 = yellow | 𝐺 = (1,1)) = 0.1

• We can calculate the posterior 
distribution over ghost locations 
given a reading using Bayes’ rule:
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Video of Demo Ghostbusters with Probability

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 |  5



Probabilistic Models
• Models describe how (a portion of) the world works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between variables
• “All models are wrong; but some are useful.”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown variables, 

given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information
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Independence
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• Two variables are independent if:

• This says that their joint distribution factors into a product two simpler 
distributions

• Another form:

• We write:

• Independence is a simplifying modeling assumption

• Empirical joint distributions: at best “close” to independent

• What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence
• 𝑁 fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Conditional Independence
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Conditional Independence
• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:

• P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I don’t have a cavity:
• P(+catch | +toothache, -cavity) = P(+catch| -cavity)

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 One can be derived from the other easily
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Conditional Independence
• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of knowledge 
about uncertain environments.

• is conditionally independent of given 

if and only if:

or, equivalently, if and only if
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Conditional Independence
• What about this domain:

• Traffic
• Umbrella
• Raining
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Conditional Independence
• What about this domain:

• Fire
• Smoke
• Alarm
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• Chain rule: 

• Trivial decomposition:

• With assumption of conditional independence:

• Bayes’ nets / graphical models help us express conditional independence assumptions

Conditional Independence and the Chain Rule
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Ghostbusters Chain Rule
 Each sensor depends only

on where the ghost is
 That means, the two sensors are 

conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

 Givens:
𝑃  +𝑔 = 0.5
𝑃  −𝑔 = 0.5
𝑃( +𝑡  | + 𝑔 ) = 0.8
𝑃( +𝑡 |  − 𝑔 ) = 0.4
𝑃( +𝑏 |  + 𝑔 ) = 0.4
𝑃( +𝑏 |  − 𝑔 ) = 0.8

𝑇 𝐵 𝐺 𝑃(𝑇, 𝐵, 𝐺)
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Naïve Bayes
• If all effects are conditionally independent 

given a single cause, the exponential size 
of knowledge representation is cut to 
linear

• A probability distribution is called a naïve 
Bayes (NB) model if all effects 𝐸1, … , 𝐸௡
are conditionally independent, given a 
single cause 𝐶

• The full joint probability distribution can be 
written as

𝐏(𝐶, 𝐸1, … , 𝐸௡) = 𝐏(𝐶) ෑ 𝐏(𝐸𝑖 | 𝐶) 
௜

• A simplifying assumption even in cases 
where the effect variables are not 
conditionally independent given the cause 
variable

• In practice, NB systems can work 
surprisingly well, even when the 
independence assumption is not true
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