
Kevin Bacon 6 Degrees of Separation

Topic 1 Coding Assignment

Algorithms Review

Recall that searches begin by visiting the root node of the search tree, given by the initial state.

Among other book-keeping details, three major things happen in sequence in order to visit a node:

1. First, we remove a node from the frontier set.

2. Second, we check the state against the goal state to determine if a solution has been found.

3. Finally, if the result of the check is negative, we then expand the node. To expand a given

node, we generate successor nodes adjacent to the current node, and add them to the frontier

set. Note that if these successor nodes are already in the frontier, or have already been

visited, then they should not be added to the frontier again.

This describes the life-cycle of a visit, and is the basic order of operations for search agents in this

assignment— (1) remove, (2) check, and (3) expand.

Please refer to lectures and Book for further details, and review the pseudocodes before you begin

the assignments.

Description

Write a program that determines how many “degrees of separation” apart two actors are.

Introduction

According to the Six Degrees of Kevin Bacon game, anyone in the Hollywood film industry can be

connected to Kevin Bacon within six steps, where each step consists of finding a film that two actors

both starred in.

In this problem, we’re interested in finding the shortest path between any two actors by choosing a

sequence of movies that connects them. For example, the shortest path between Jennifer Lawrence

and Tom Hanks is 2: Jennifer Lawrence is connected to Kevin Bacon by both starring in “X-Men: First

Class,” and Kevin Bacon is connected to Tom Hanks by both starring in “Apollo 13.”

We can frame this as a search problem: our states are people. Our actions are movies, which take us

from one actor to another (it’s true that a movie could take us to multiple different actors, but that’s

okay for this problem). Our initial state and goal state are defined by the two people we’re trying to

connect. By using breadth-first search, we can find the shortest path from one actor to another.

Understanding The Environment

The distribution code contains two sets of CSV data files: one set in the large directory and one set in

the small directory. Each contains files with the same names, and the same structure, but small is a

much smaller dataset for ease of testing and experimentation. Note that the large dataset is indeed

very large and you should not try to open the files yourself.

Each dataset consists of three CSV files. A CSV file, if unfamiliar, is just a way of organizing data in a

text-based format: each row corresponds to one data entry, with commas in the row separating the

values for that entry.

Open up small/people.csv. You’ll see that each person has a unique id, corresponding with their id

in IMDb’s database. They also have a name, and a birth year.

Next, open up small/movies.csv. You’ll see here that each movie also has a unique id, in addition to

a title and the year in which the movie was released.

Now, open up small/stars.csv. This file establishes a relationship between the people in people.csv

and the movies in movies.csv. Each row is a pair of a person_id value and movie_id value. The first

row (ignoring the header), for example, states that the person with id 102 starred in the movie with id

104257. Checking that against people.csv and movies.csv, you’ll find that this line is saying that

Kevin Bacon starred in the movie “A Few Good Men.”

Next, take a look at degrees.py. At the top, several data structures are defined to store information

from the CSV files. The “names” dictionary is a way to look up a person by their name: it maps names

to a set of corresponding ids (because it’s possible that multiple actors have the same name). The

people dictionary maps each person’s id to another dictionary with values for the person’s name, birth

year, and the set of all the movies they have starred in. And the movies dictionary maps each movie’s

id to another dictionary with values for that movie’s title, release year, and the set of all the movie’s

stars. The load_data function loads data from the CSV files into these data structures.

The main function in this program first loads data into memory (the directory from which the data is

loaded can be specified by a command-line argument). Then, the function prompts the user to type in

two names. The person_id_for_name function retrieves the id for any person (and handles

prompting the user to clarify, in the event that multiple people have the same name). The function

then calls the shortest_path function to compute the shortest path between the two people, and

prints out the path.

The shortest_path function, however, is left unimplemented. That’s where you come in!

Task Specification

Complete the implementation of the shortest_path function such that it returns the shortest path from

the person with id source to the person with the id target.

• Assuming there is a path from the source to the target, your function should return a list, where

each list item is the next (movie_id, person_id) pair in the path from the source to the target.

Each pair should be a tuple of two ints.

For example, if the return values of shortest_path were [(1, 2), (3, 4)], that would mean that

the source starred in movie 1 with person 2, person 2 starred in movie 3 with person 4, and

person 4 is the target.

• If there are multiple paths of minimum length from the source to the target, your function can

return any of them.

• If there is no possible path between two actors, your function should return None.

Important: Do NOT change any code outside the shortest_path function!

Implementation Hints

• You may call the neighbors_for_person function, which accepts a person’s id as input, and

returns a set of (movie_id, person_id) pairs for all people who starred in a movie with a given

person.

• You should not need to modify anything else in the file other than the shortest_path function,

though you may write additional functions and/or import other Python standard library

modules. Do NOT include any other modules which are not part of Python standard library!

• While the implementation of search checks for a goal when a node is popped off the frontier,

you can improve the efficiency of your search by checking for a goal as nodes are added to

the frontier: if you detect a goal node, no need to add it to the frontier, you can simply return

the solution immediately.

• We’ve already provided you with a file util.py that contains the implementations for Node,

StackFrontier, and QueueFrontier, which you’re welcome to use if you’d like. However, do

not edit these files since the automatic grader will not be aware of any changes.

Testing Your Solution

The automatic grader will run your program against the large dataset. You can run and test your

solution against the same files by running the program with the following command:

python degrees.py large

NOTE: This will load the large dataset which will take a long time to load and process. You can

replace the word ”large” with ”small” to load the the small dataset to test and experiment while

implementing your algorithm but the following tests will only work with the large dataset.

Here are some pairs of actors and the degrees of separation you should be receiving if your solution

is correct:

• Jim Carrey – Robin Williams (ID: 245) : 2 degrees

• Rowan Atkinson – Drew Barrymore : 2 degrees

• Clint Eastwood – Jodie Foster : 2 degrees

• Emma Watson – Jennifer Lawrence : 3 degrees

• Jarmo Koski – James Earl Jones : 4 degrees

• Sean Bean – Robert Downey Jr. : 2 degrees

• Marlon Brando – Michael Cera : 3 degrees

• Josh Hartnett – Catherine Zeta-Jones : 2 degrees

• Christopher Lee (ID: 489) – Harrison Ford : 2 degrees

• Billy Crystal – Sean Connery : 2 degrees

Note: The automatic grader will test your code with these same pairs but it will also use additional

pairs to verify that your algorithm is actually using the data given to it and it is not just returning hard

coded answers.

