
Value Iteration

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 0

Value Iteration
• Start with 0 : no time steps left means an expected reward sum of zero

• Given vector of 𝑘 values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: 2

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

)’s(kV

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 1

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 2

Optimal Quantities
 The value (utility) of a state :

V*(s) = expected utility starting in and
acting optimally

 The value (utility) of a q-state
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo: gridworld values (L9D1)]DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 3

Gridworld Values V*

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 4

Gridworld: Q*

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 5

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 6

The Bellman Equations
• Definition of “optimal utility” via expectimax recurrence gives

a simple one-step lookahead relationship amongst optimal
utility values

• These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 7

Value Iteration
• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 8

Convergence*
• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

• Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 9

Policy Methods

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 10

Policy Evaluation

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 11

Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy (s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

(s)

s

s, (s)

s, (s),s’
s’

Do the optimal action Do what  says to do

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 12

Utilities for a Fixed Policy
• Another basic operation: compute the utility of a state under

a fixed (generally non-optimal) policy

• Define the utility of a state , under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

• Recursive relation (one-step look-ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’
s’

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 13

Example: Policy Evaluation
Always Go Right Always Go Forward

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 14

Example: Policy Evaluation
Always Go Right Always Go Forward

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 15

Policy Evaluation
• How do we calculate the 𝑉’s for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: 𝑂(𝑆2) per iteration

• Idea 2: Without the 𝐦𝐚𝐱es, the Bellman equations are just a linear system
• Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’
s’

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 16

Policy Extraction

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 17

Computing Actions from Values
• Let’s imagine we have the optimal values ∗

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the
values

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 18

Computing Actions from Q-Values

• Let’s imagine we have the optimal -values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from -values than
values!

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 19

Policy Iteration

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 20

Problems with Value Iteration
• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – 2 per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 21

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 22

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 23

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 24

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 25

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 26

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 27

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 28

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 29

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 30

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 31

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 32

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 33

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 34

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 35

Policy Iteration
• Alternative approach for optimal values:

• Step 1: Policy evaluation: calculate utilities for some fixed policy (not
optimal utilities!) until convergence

• Step 2: Policy improvement: update policy using one-step look-ahead
with resulting converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!
• Can converge (much) faster under some conditions

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 36

Policy Iteration

• Evaluation: For fixed current policy , find values with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 37

Comparison
• Both value iteration and policy iteration compute the same thing (all optimal

values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast

because we consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs
DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 38

Summary: MDP Algorithms
• So you want to….

• Compute optimal values: use value iteration or policy iteration
• Compute values for a particular policy: use policy evaluation
• Turn your values into a policy: use policy extraction (one-step

lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates
• They all use one-step lookahead expectimax fragments
• They differ only in whether we plug in a fixed policy or max over actions

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 39

