C

'FJ Tampere University

Value lteration

III

C

o J Tampere University

Value Iteration

« Start with V,(s) = 0: no time steps left means an expected reward sum of zero

* Given vector of V, (s) values, do one ply of expectimax from each state:
Vk+1(s)

Vigp1(s) < max > T(s,a,s') |R(s,a,s') +vVi(s)]

* Repeat until convergence

« Complexity of each iteration: 0(5%4)

* Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

o J Tampere University

Example: Value Iteration

N § by
{/ . o

2.5

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

Slow /
O 0.5
10 +1 Overheated

+2

Assume no discount!

Vit1(s) « maaxZT(s, a,s’) [R(s, a,s) + 7Vk(3')}

S

17 3
Fast 05 +2 <

| 2

C

= J Tampere University

Optimal Quantities

The value (utility) of a state s:
V*(s) = expected utility starting in s and A

. : sisa
acting optimally state
The value (utility) of a g-state (s, a): gs_’sztf @
Q’(s,a) = expected utility starting out ;
having taken action a from state s and (s,a,8)is a
(thereafter) acting optimally transition

The optimal policy:
m'(s) = optimal action from state s

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

[Demo: gridworld values (L9DT)]

C

= J Tampere University

Gridworld Values V*

Gridworld Display

VALUES AFTER

DATA.ML.310 | ARTIFICIAL INTELLIGENC]

100 ITERATIONS

'D Tampere University
Gridworld: Q*

>
-
=}
4]
(]
=
o
S
e
=
(&)

. 4 2

S : w
: il ZS AN
]

52

DK

C

'FJ Tampere University

The Bellman Equations

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

o J Tampere University

The Bellman Equations

* Definition of “optimal utility” via expectimax recurrence gives
a simple one-step lookahead relationship amongst optimal
utility values

V*(s) = max Q*(s,a)
Q*(s,a) =) T(s,a, s [R(s,a,, s+ ny*(s’)}

V*(s) = mC?XZT(S, a,s’) [R(s,a, s + 'yV*(s’)}

S

* These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

o J Tampere University

Value Iteration

* Bellman equations characterize the optimal values:

V*(s) = méaxZT(s,a,, s") [R(s,a, s + 'yV*(s')}

S
* Value iteration computes them:

Vigp1(s) < max > T(s,a,s') |R(s,a,s') +vVi(s)]

S

* Value iteration is just a fixed point solution method
* ... though the V, vectors are also interpretable as time-limited values

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

o J Tampere University

Convergence®

* How do we know the V, vectors are going to converge?

* Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

e Case 2: If the discount is less than 1

e Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

That last layer is at best all Ry,

It is at worst Ry,

But everything is discounted by y* that far out
SoV, and V,,, are at most yk max|R| different
So as k increases, the values converge

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

Vit1(s)

\ 4

C

'D Tampere University

Policy Methods

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

'FJ Tampere University

Policy Evaluation

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

o J Tampere University

Fixed Policies

Do the optimal action Do what 7 says to do

“’s,a,S

"A
A s

* Expectimax trees max over all actions to compute the optimal values

* If we fixed some policy 7t(s), then the tree would be simpler — only one action per state
e ... though the tree’s value would depend on which policy we fixed

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

| 12

C

o J Tampere University

Utilities for a Fixed Policy

* Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

 Define the utility of a state s, under a fixed policy 7:
V7(s) = expected total discounted rewards starting in s and following &t

* Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,m(s),5) + V" ()]

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

| 13

C

o J Tampere University

Example: Policy Evaluation
Always Go Right Always Go Forward

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

= J Tampere University

Example: Policy Evaluation
Always Go Right

100.00 -10.00
1.09]| -10.00

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

Always Go Forward

| 15

C

o J Tampere University

Policy Evaluation

* How do we calculate the V’s for a fixed policy t?

* |[dea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vg (s) =0
Vit 1(s) < Y T(s,7(s),s)[R(s,7(s),s") + Vi (s)]
* Efficiency: 0(S%) per iteration

* |[dea 2: Without the maxes, the Bellman equations are just a linear system
* Solve with Matlab (or your favorite linear system solver)

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

| 16

C

'IJ Tampere University

Policy Extraction
|

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

'FJ Tampere University

Computing Actions from Values

* Let’s imagine we have the optimal values V*(s)

* How should we act?
* |It's not obvious!

* We need to do a mini-expectimax (one step)

" (s) = argmax} T(s,a,s)[R(s,a,s) +vV*(s")]

S

 This is called policy extraction, since it gets the policy implied by the
values

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

C

'D Tampere University

Computing Actions from Q-Values

. Let's imagine we hive the optimal g-values: %%g
' (s) = arg max Q" (s, a) MM

* Important lesson: actions are easier to select from g-values than
values!

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 19

C

'FJ Tampere University

Policy Iteration
> »/

= ﬂ

III

C

o J Tampere University

Problems with Value Iteration

* Value iteration repeats the Bellman updates:

Vir1(s) < max > T(s,a,8') |R(s,a,s') 4~ Vi(s)]

* Problem 1: It’s slow — O (S?A) per iteration e
* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 21

o

= J Tampere University

k=0

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

| WINTER 2022 Living reward = 0

o

o J Tampere University

k=1

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

| WINTER 2022 Living reward = 0

C

o J Tampere University

k=2

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

| WINTER 2022 Living reward = 0

C

= J Tampere University

k=3

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

| WINTER 2022 Living reward = 0

C

o J Tampere University

k=4

n.
A

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

| WINTER 2022 Living reward =0

C

J Tampere University

; :
— Gridworld Display

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

| WINTER 2022 Living reward =0

C

o J Tampere University

k=6

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

DATA.ML.310 | ARTIFICIAL INTELLIGENCE L|V|ng reward =0 | 28

C

= J Tampere University

—
_— Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward=0 | #°

DATA.ML.310 | ARTIFICIAL INTELLIGENCH

C

= J Tampere University

—
—_— Gridworld Display

VALUES AFTER 8 ITERATIONS NF)ise =0.2
Discount =0.9

DATA.ML.310 | ARTIFICIAL INTELLIGENCH L|V|ng reward =0 | 30

C

o J Tampere University

k=9

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward=0 | *

DATA.ML.310 | ARTIFICIAL INTELLIGENCE

C

= J Tampere University

] :
] Gridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward=0 | *

DATA.ML.310 | ARTIFICIAL INTELLIGENCH

C

= J Tampere University

—
] Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward=0 | *

DATA.ML.310 | ARTIFICIAL INTELLIGENCH

C

= J Tampere University

k— 1 Gridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward=0 | *

DATA.ML.310 | ARTIFICIAL INTELLIGENCH

C

J Tampere University

| |
k— 1 0 O Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward=0 | %

DATA.ML.310 | ARTIFICIAL INTELLIGENCE

C

o J Tampere University

Policy Iteration

* Alternative approach for optimal values:

 Step 1: Policy evaluation: calculate utilities for some fixed policy (not
optimal utilities!) until convergence

» Step 2: Policy improvement: update policy using one-step look-ahead
with resulting converged (but not optimal!) utilities as future values
» Repeat steps until policy converges

* This is policy iteration

* [t's still optimal!
« Can converge (much) faster under some conditions

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 36

C

= J Tampere University

Policy Iteration

« Evaluation: For fixed current policy =, find values with policy evaluation:
* Iterate until values converge:

Vi (s) < Y T(s,mi(s), ") |R(s,mi(s),8") + v V()]

« Improvement: For fixed values, get a better policy using policy extraction
* One-step look-ahead:

o2 (6) = arg ax 3750, [R(o,,) + V()

S

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 37

C

o J Tampere University

Comparison

 Both value iteration and policy iteration compute the same thing (all optimal
values)

* In value iteration:
 Every iteration updates both the values and (implicitly) the policy
» We don’t track the policy, but taking the max over actions implicitly recomputes it

* In policy iteration:
» We do several passes that update utilities with fixed policy (each pass is fast
because we consider only one action, not all of them)

* After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be better (or we're done)

» Both are dynamic programs for solving MDPs

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

| 38

C

o J Tampere University

Summary: MDP Algorithms

* S0 you want to....
« Compute optimal values: use value iteration or policy iteration
« Compute values for a particular policy: use policy evaluation

 Turn your values into a policy: use policy extraction (one-step
lookahead)

* These all look the same!
» They basically are — they are all variations of Bellman updates
* They all use one-step lookahead expectimax fragments
 They differ only in whether we plug in a fixed policy or max over actions

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 39

