

Value Iteration

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

 V_2

Example: Value Iteration

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Gridworld Values V*

DATA ML 310 LARTIFICIAL INTELLIGENC<mark>E I WINTER 20</mark>

Gridworld: Q*

The Bellman Equations

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value Iteration

• Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ullet ... though the V_k vectors are also interpretable as time-limited values

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by y^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state *s* under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi$
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values $V^*(s)$
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal *q*-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

 Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow $O(S^2A)$ per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

Noise = 0.2Discount = 0.9Living reward = $0^{-1.22}$

Noise = 0.2Discount = 0.9Living reward = $0^{-1.23}$

Noise = 0.2Discount = 0.9Living reward = $0^{-1.24}$

Noise = 0.2 Discount = 0.9 Living reward = 0 | 25

k=4

Noise = 0.2Discount = 0.9Living reward = $0^{-1.26}$

k=5

Noise = 0.2Discount = 0.9Living reward = $0^{-1.27}$

k=6

Noise = 0.2Discount = 0.9Living reward = $0^{-1.28}$

Noise = 0.2 Discount = 0.9 Living reward = 0 | 29

Noise = 0.2Discount = 0.9Living reward = 0^{-30}

k=9

Noise = 0.2Discount = 0.9Living reward = $0^{-1.31}$

k=10

Noise = 0.2Discount = 0.9Living reward = 0^{-32}

k=11

Noise = 0.2Discount = 0.9Living reward = $0^{-1.33}$

k=12

Noise = 0.2Discount = 0.9Living reward = 0^{-34}

k = 100

Noise = 0.2Discount = 0.9Living reward = $0^{-1.35}$

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions