
Value Iteration
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Value Iteration
• Start with 0 : no time steps left means an expected reward sum of zero

• Given vector of 𝑘 values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: 2

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do
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Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!
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Optimal Quantities
 The value (utility) of a state :

V*(s) = expected utility starting in and 
acting optimally

 The value (utility) of a q-state 
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s
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Gridworld Values V*
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Gridworld: Q*
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The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal
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The Bellman Equations
• Definition of “optimal utility” via expectimax recurrence gives 

a simple one-step lookahead relationship amongst optimal 
utility values

• These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over
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Value Iteration
• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the Vk vectors are also interpretable as time-limited values
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Convergence*
• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

• Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge
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Policy Methods
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Policy Evaluation
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Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy (s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed
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Do the optimal action Do what  says to do
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Utilities for a Fixed Policy
• Another basic operation: compute the utility of a state under 

a fixed (generally non-optimal) policy

• Define the utility of a state , under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

• Recursive relation (one-step look-ahead / Bellman equation):
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Example: Policy Evaluation
Always Go Right Always Go Forward
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Example: Policy Evaluation
Always Go Right Always Go Forward
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Policy Evaluation
• How do we calculate the 𝑉’s for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: 𝑂(𝑆2) per iteration

• Idea 2: Without the 𝐦𝐚𝐱es, the Bellman equations are just a linear system
• Solve with Matlab (or your favorite linear system solver)
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Policy Extraction
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Computing Actions from Values
• Let’s imagine we have the optimal values ∗

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the 
values
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Computing Actions from Q-Values

• Let’s imagine we have the optimal -values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from -values than 
values!
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Policy Iteration
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Problems with Value Iteration
• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – 2 per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values
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k=0

Noise = 0.2
Discount = 0.9
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k=1

Noise = 0.2
Discount = 0.9
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k=2

Noise = 0.2
Discount = 0.9
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k=3

Noise = 0.2
Discount = 0.9
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k=4

Noise = 0.2
Discount = 0.9
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k=5

Noise = 0.2
Discount = 0.9
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k=6

Noise = 0.2
Discount = 0.9
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k=7

Noise = 0.2
Discount = 0.9
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k=8

Noise = 0.2
Discount = 0.9
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k=9

Noise = 0.2
Discount = 0.9
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k=10

Noise = 0.2
Discount = 0.9
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k=11

Noise = 0.2
Discount = 0.9
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k=12

Noise = 0.2
Discount = 0.9
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k=100

Noise = 0.2
Discount = 0.9
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Policy Iteration
• Alternative approach for optimal values:

• Step 1: Policy evaluation: calculate utilities for some fixed policy (not 
optimal utilities!) until convergence

• Step 2: Policy improvement: update policy using one-step look-ahead 
with resulting converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!
• Can converge (much) faster under some conditions
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Policy Iteration

• Evaluation: For fixed current policy , find values with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:
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Comparison
• Both value iteration and policy iteration compute the same thing (all optimal 

values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast 

because we consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs
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Summary: MDP Algorithms
• So you want to….

• Compute optimal values: use value iteration or policy iteration
• Compute values for a particular policy: use policy evaluation
• Turn your values into a policy: use policy extraction (one-step 

lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates
• They all use one-step lookahead expectimax fragments
• They differ only in whether we plug in a fixed policy or max over actions
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