Probabilistic Reasoning
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Bayes’ Nets: Big Picture
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Bayes’ Nets: Big Picture

* Two problems with using full joint distribution tables as our
probabilistic models:

* Unless there are only a few variables, the joint is WAY too big to
represent explicitly

* Hard to learn (estimate) anything empirically about more than a few
variables at a time

* Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

* More properly called graphical models
* We describe how variables locally interact
* Local interactions chain together to give global, indirect interactions

* For about 10 min, we’ll be vague about how these interactions are
specified
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Example Bayes’ Net: Insurance

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022




C

'IJ Tampere University

Example Bayes’ Net: Car
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Graphical Model Notation

* Nodes: variables (with domains)

* Can be assigned (observed) or unassigned
(unobserved)

* Arcs: interactions
 Similar to CSP constraints
* Indicate “direct influence” between variables
* Formally: encode conditional independence

(more later)
Toothache

* For now: imagine that arrows mean direct
causation (in general, they don’t!)
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Example: Coin Flips

* N independent coin flips

ONONEENO

* No interactions between variables: absolute independence
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Example: Traffic

e Variables:
* R:ltrains
e T: There is traffic

* Model 1: independence

* Why is an agent using model 2 better?
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Example: Traffic Il

* Let’s build a causal graphical model!
* Variables M

* T: Traffic

* R: It rains

* L: Low pressure
e D: Roof drips

* B: Ballgame

* C: Cavity
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Example: Traffic

= Variables o
T: Traffic
R: It rains

L: Low pressure 9 9
D: Roof drips
) @

B: Ballgame
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Example: Alarm Network
* Variables .
e B: Burglary »w
* A: Alarm goes off 2 A
* M: Mary calls N

* J: John calls
 E: Earthquake!
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P(B)
.001
A P()
T 90
F .05
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Earthquake

P(E)

.002

P(A)

95

94

.29

|3 T 3| ™

.001

P(M)

.70

01
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Bayes’ Net Semantics
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Bayes’ Net Semantics

* A set of nodes, one per variable X

* A directed, acyclic graph

e A conditional distribution for each node

* A collection of distributi,ons over X, one for each
combination of parents values

P(Xl|aq...an)

* CPT: conditional probability table

. . . (131 ”
* Description of a noisy causal  process

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

* Bayes’ nets implicitly encode joint distributions
* As a product of local conditional distributions

* To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))

=1
Toothache @

P(+-cavity, +catch, -toothache)

e Example:
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Probabilities in BNs I PLELE

* Why are we guaranteed that setting

n
P(z1,22,...2n) = || P(z;|parents(X;))

1=1
results in a proper joint distribution?

n
* Chain rule (valid for all distributions): P(x1,x2,...2n) = H P(x;|lxq...2i—1)
1=1
* Assume conditional independences: P(x;|zq1,...2i_1) = P(x;|parents(X;))

- Consequence: n
P(z1,x,...xn) = || P(z;|parents(X;))

=1

* Not every BN can represent every joint distribution

* The topology enforces certain conditional independencies

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022 | 15



C

o J Tampere University

Example: Coin Flips

P(X1) P(X3) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be

represented by a Bayes’ net with no arcs.
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Example: Traffic

P(R)

+r | 1/4 P(+r,—t) =
—r 3/4

P(T|R)
+r +t 3/4
—t | 1/4

—r +t 1/2
—t 1/2
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Example: Alarm Network

Burglary

B | P(B)

+b [0.001

—b [ 0.999
A | ] |P(lA)
+a | +j 0.9
t+a|—j | 01
—a | +j | 0.05
—a | —j | 095

A M |P(M|A)
+a | +m 0.7
+a | —m 0.3
—a |+m | 0.01
—a |—m | 099

E | P(E)

+e [0.002

—e 10.998

B E A | P(A|B,E)
+b | +e | +a 0.95
+b | +e | —a 0.05
+b | —e | +a 0.94
+b | —e | —a 0.06
—b | +e | +a 0.29
—b | +e | —a 0.71
—b | —e | +a 0.001
—b | —e | —a 0.999




C

o J Tampere University

Bayes’ Nets

* So far: how a Bayes’ net encodes a joint
distribution

* Next: how to answer queries about that
distribution
e Today:

* First assembled BNs using an intuitive notion of conditional
independence as causality

* Then saw that key property is conditional independence

* Main goal: answer queries about conditional
independence and influence

 After that: how to answer numerical queries
(inference)
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Bayes’ Nets

* A Bayes’ netis an
efficient encoding
of a probabilistic
model of a domain

* Questions we can ask:
* Inference: given a fixed BN, whatis P(X | e)?
* Representation: given a BN graph, what kinds of distributions can it encode?

* Modeling: what BN is most appropriate for a given domain?
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Bayes’ Net Semantics

* A directed, acyclic graph, one node per random variable

* A conditional probability table (CPT) for each node

e A coIIec:cion of distributions over X, one for each combination of
parents values
P(Xlaq...an)

* Bayes’ nets implicitly encode joint distributions
* As a product of local conditional distributions

» To see what probability a BN gives to a full assignment, multiply

all the relevant conditionals together:

P(:Ul, o, .. :cn) = H P(azi\parents(Xi))
1=1
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Example: Alarm Network

B P(B) E P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
A J P(J|A) 0 A M P(M]|A)
+a | + 0.9 +a | +m 0.7 6 E A PIAIBE)
+a | - 0.1 +a | -m 0.3 tb | +e | +a 0.95
a | 4 | 005 a | +m | 0.01 tb | +e | -a 0.05
a | 4 | 095 a | -m | 0.99 tb | e | +a 0.94
+b | -e -a 0.06
. b | +e | +a 0.29
P(+b7 —€, —|—CL, —7s +m) — b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999
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Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
b | 0.999 e | 0.998
Al 1| pyula 0 Al M |PMA)
+a | 4 0.9 +a | +m 0.7 B : A P(AIBE)
val 5 | 01 /a| -m| 03 tb | +e | +a 0.95
a | 4 | 005 a | +m | 0.1 tb|+e) a| 005
a | 4 | oos a | -m | 099 tb| e | +a 0.94
b | e | -a 0.06
P(_|_b’ —e, —I—CL, —1, —|—m) — +e | +a 0.29
+e -a 0.71

P(4+b)P(—e)P(+a| + b,—e)P(—j| + a)P(+m| + a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7

-e +a 0.001
-e -a 0.999

1 1 1 1
O |0 (T | T
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. ’
Size of a Bayes’ Net
* How big is a joint distribution over N Both give you the power to calculate
Boolean variables?
N P(X1,Xo,...Xn)
BNs: Huge space savings!

* How big is an N-node net if nodes
have up to k parents?

0, (N * 2k+1) Also faster to answer queries

Also easier to elicit local CPTs

| 24
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Bayes’ Nets
Jepresentation

» Conditional Independences
 Probabilistic Inference

» Learning Bayes’ Nets from Data
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Conditional Independence

 Xand Y are independent if

Va:,y P($ay) :P(.’L‘)P(y) --—-= X1Y

e XandY are conditionally independent given Z

* (Conditional) independence is a property of a distribution
Vz,y,z P(z,ylz) = P(z|z)P(ylz) ---» X LY|Z

e Example:

Alarm 1L Fire|Smoke
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Bayes Nets: Assumptions

* Assumptions we are required to make to define the Bayes
net when given the graph:

P(xi|lxy - -xi—1) = P(x;|parents(X;))

* Beyond above “chain rule > Bayes net” conditional
independence assumptions

* Often additional conditional independences

* They can be read off the graph

* Important for modeling: understand assumptions made

when choosing a Bayes net graph
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Independence in a BN

* Important question about a BN:
* Are two nodes independent given certain evidence?
* If yes, can prove using algebra (tedious in general)
* If no, can prove with a counter example

* Example:
OmOn0

e Question: are X and Z necessarily independent?

* Answer: no. Example: low pressure causes rain, which causes traffic.

* X can influence Z, Z can influence X (via Y)
* Addendum: they could be independent: how?
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Bayes Nets Representation Summary

* Bayes nets compactly encode joint distributions

* Guaranteed independencies of distributions can be
deduced from BN graph structure

* A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution
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Bayes’ Nets
%epresentation

» & onditional Independences

* Probabilistic Inference
« Enumeration (exact, exponential complexity)
« Variable elimination (exact, worst-case
exponential complexity, often better)
» Probabilistic inference is NP-complete
« Sampling (approximate)

» Learning Bayes’ Nets from Data
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Inference
* Inference: calculating some useful Examples:
quantity from a joint probability _ . .
distribution Posterior probability

P(Q|E1=e1,... B = ep)
= Most likely explanation:

argmax, P(Q = q|E1 =e1...)
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Inference by Enumeration
* Works fine with
* General case: We want: multiple query
* Evidence variables: Bi...Bp=e1...ex | X, Xo,...Xn variables, too
* Query* variable: Q All variables P(Q|61 N ek)
* Hidden variables: Hy...Hy

Step 3: Normalize

1
><_

Step 2: Sum out H to get joint

Step 1: Select the
of Query and evidence

entries consistent
with the evidence

o
7
02 |
oL | LE i
_@’ Z=ZP(Q,81“'€k)
P@Qer...ep) = Y P(Qh1.. . hrer.. . e) i
hl...hr T P(Q‘el ek) — _P(Q761 |€:78)
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Inference by Enumeration in Bayes’ Net
* Given unlimited time, inference in BNs is easy e e
 Reminder of inference by enumeration by example:

:ZP (B,e,a,+j,+m)

= ZP P(a|B,e)P(+jla)P(+m|a)

=P(B)P(+e)P(+a|B, +e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B,+e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)
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Inference by Enumeration?

P(Antilock|observed variables) = 7
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Inference by Enumeration vs. Variable Elimination

* Why is inference by enumeration so slow? Idea: interleave joining and marginalizing!
* You join up the whole joint distribution before you = Called “Variable Elimination”

sum out the hidden variables

= Still NP-hard, but usually much faster than
inference by enumeration
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VE: Computational and Space Complexity

» The computational and space complexity of variable elimination is
determined by the largest factor

» The elimination ordering can greatly affect the size of the largest
factor.
* E.g., previous slide’s example 2" vs. 2

* Does there always exist an ordering that only results in small factors?
* No!
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Worst Case Complexity?
« CSP:

(z1VzoVz3)A(—x1 VeV Zg )A (X2 V2o VEg)A(n23V 24 Vx5 )A(22VEs Ve )A(24VEs Ve )A(—xsVEsVx7)A(n2sVozsVEy)

P(X;=0)=P(X;=1)=05 Xy X X3 X4 ¢ Xe X7
Yi =X, VXyV-X;3
Yg — ﬁ/Ys \ X()' VX7
Yl_.g =Y1AYs

Yrs =Yz AYs
Y1234 =Y12AY34
Y5678 =Y56AYrs

Yio Y34 Y56 Y78
Yi23.4 Y5678

Z=Y1234"NY5678 z

* If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a
solution.

* Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.
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Polytrees

* A polytree is a directed graph with no undirected cycles

 For poly-trees you can always find an ordering that is efficient
e Try it!!

 Cut-set conditioning for Bayes' net inference

» Choose set of variables such that if removed only a polytree remains
» Exercise: Think about how the specifics would work out!
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Bayes’ Nets

yRepresentation
J/Conditional Independences

* Probabilistic Inference

* Bhumeration (exact, exponential
omplexity)

 Variable elimination (exact, worst-case
Jxponential complexity, often better)

* Inference is NP-complete

-Jampling (approximate)

* Learning Bayes’ Nets from Data
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Variable Elimination

* Interleave joining and marginalizing

* d* entries computed for a factor over k
variables with domain sizes d 4

 Ordering of elimination of hidden
variables can affect size of factors
generated

* Worst case: running time exponential in
the size of the Bayes’ net
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