

Probabilistic Reasoning

CHAPTER 14 IN THE TEXTBOOK

Bayes' Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

• For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

• *N* independent coin flips

• • •

• No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

• Why is an agent using model 2 better?

Model 2: rain causes traffic

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Traffic

Variables

■ T: Traffic

R: It rains

L: Low pressure

D: Roof drips

■ B: Ballgame

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Tampere University

Bayes' Net Semantics

Day to Company to the company to the

Bayes' Net Semantics

- A set of nodes, one per variable *X*
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over *X*, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$
 results in a proper joint distribution?

Chain rule (valid for all distributions):

 $P(x_1, x_2, \dots x_n) = \prod_{i=1}^{n} P(x_i | x_1 \dots x_{i-1})$ $P(x_i | x_1, \dots x_{i-1}) = P(x_i | parents(X_i))$

Assume conditional independences:

→ Consequence:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(X_1)$$

h	0.5
t	0.5

D	1	\mathbf{v}	•	٦
\boldsymbol{P}	(Λ	2)

h	0.5
t	0.5

$$P(X_n)$$

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$P(+r, -t) =$$

Example: Alarm Network

A	J	P(J A)
+ <i>a</i>	+j	0.9
+ <i>a</i>	<i>−j</i>	0.1
-a	+j	0.05
-a	<u></u> -ј	0.95

A	M	P(M A)
+ <i>a</i>	+m	0.7
+ <i>a</i>	-m	0.3
-a	+m	0.01
-a	-m	0.99

E	P(E)
+ <i>e</i>	0.002
-e	0.998

В	E	A	P(A B,E)
+b	+ <i>e</i>	+ <i>a</i>	0.95
+b	+ <i>e</i>	-a	0.05
+b	-e	+ <i>a</i>	0.94
+b	-e	-a	0.06
-b	+ <i>e</i>	+ <i>a</i>	0.29
-b	+ <i>e</i>	-a	0.71
-b	-e	+ <i>a</i>	0.001
-b	-e	-a	0.999

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values $P(X|a_1 \ldots a_n)$

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together: n

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

+a

+a

-a

-a

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

0.9

0.1

0.05

0.95

(B)	E
	\overrightarrow{A}
$\left(\int \right)$	M

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) =$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

P(J|A)

0.9

0.1

0.05

0.95

+i

+a

+a

-a

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Size of a Bayes' Net

How big is a joint distribution over N
Boolean variables?

 2^N

• How big is an *N*-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries

Bayes' Nets Pepresentation

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

• X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) - - - \rightarrow X \perp\!\!\!\perp Y$$

- X and Y are conditionally independent given Z
- (Conditional) independence is a property of a distribution

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\!\perp Y|Z$$

• Example:

 $Alarm \bot Fire | Smoke$

Bayes Nets: Assumptions

• Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets Pepresentation

- onditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

 Inference: calculating some useful quantity from a joint probability distribution

Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$$

Inference by Enumeration

General case:

 $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ All variables• Evidence variables: • Query* variable: • Hidden variables:

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q,e_1\dots e_k) = \sum_{h_1\dots h_r} P(Q,h_1\dots h_r,e_1\dots e_k)$$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k)=rac{1}{Z}P(Q,e_1\cdots e_k)$$

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2022

Tampere University

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$P(+m|a)$$
 M $P(-a|B,+e)P(+j|-a)P(+m|-a)$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+$$

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

• CSP:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor x_6 \lor \neg x_7) \land (x_5 \lor x_7$$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- **⊘**Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential omplexity)
 - Variable elimination (exact, worst-case ponential complexity, often better)
 - Inference is NP-complete
 - ampling (approximate)
- Learning Bayes' Nets from Data

Variable Elimination

- Interleave joining and marginalizing
- d^k entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net

