
Tic-Tac-Toe

Algorithms Review

Before you begin, review the lecture slides and the book on adversarial search. Is this
a zero-sum game? What is the minimax principle? We will create a "Player AI" to play as
if the computer is completely adversarial. In particular, we will employ
the minimax algorithm in this assignment.

Remember, in game-playing we generally pick a strategy to employ. With the minimax
algorithm, the strategy assumes that the computer opponent is perfect in minimizing the
player's outcome. Whether or not the opponent is actually perfect in doing so is another
question. As a general principle, how far the actual opponent's actual behavior deviates
from the assumption certainly affects how well the AI performs [1]. However, you will see
that this strategy works well in this game. In this assignment, we will implement and
optimize the minimax algorithm.
.

[1] In the case of a simple game of tic-tac-toe, it is useful to employ the minimax
algorithm, which assumes that the opponent is a perfect "minimizing" agent. In practice,
however, we may encounter a sub-par opponent that makes silly moves. When this
happens, the algorithm's assumption deviates from the actual opponent's behavior. In
this case, it still leads to the desired outcome of never losing. However, if the deviation

goes the other way (e.g. suppose we employ a "maximax" algorithm that assumes that
the opponent wants us to win), then the outcome would certainly be different.

Description

Using Minimax, implement an AI to play Tic-Tac-Toe optimally.

Introduction

In the directory for the project, run pip3 install -r requirements.txt to install the required Python
package (pygame) for this project.

Understanding the Environment

There are two main files in this project:

 runner.py (implemented for you) : contains all of the code to run the graphical interface
for the game.

 tictactoe.py (your task) : contains all of the logic for playing the game, and for making
optimal moves.

Once you’ve completed all the required functions in tictactoe.py, you should be able to run
python runner.py to play against your AI!

In tictactoe.py we define three variables: X, O, and EMPTY, to represent possible moves of the
board.

The function initial_state returns the starting state of the board. For this problem, we’ve chosen
to represent the board as a list of three lists (representing the three rows of the board), where
each internal list contains three values that are either X, O, or EMPTY. What follows are functions
that we’ve left up to you to implement!

Task Specification

Complete the implementations of player, actions, result, winner, terminal, utility, and minimax.

 The player function should take a board state as input, and return which player’s turn it is
(either X or O).
o In the initial game state, X gets the first move. Subsequently, the player alternates

with each additional move.
o Any return value is acceptable if a terminal board is provided as input (i.e., the game

is already over).
 The actions function should return a set of all of the possible actions that can be taken on a

given board.
o Each action should be represented as a tuple (i, j) where i corresponds to the row of

the move (0, 1, or 2) and j corresponds to which cell in the row corresponds to the
move (also 0, 1, or 2).

o Possible moves are any cells on the board that do not already have an X or an O in
them.

o Any return value is acceptable if a terminal board is provided as input.
 The result function takes a board and an action as input, and should return a new board

state, without modifying the original board.
o If action is not a valid action for the board, your program should raise an exception.
o The returned board state should be the board that would result from taking the

original input board, and letting the player whose turn it is make their move at the cell
indicated by the input action.

o Importantly, the original board should be left unmodified: since Minimax will
ultimately require considering many different board states during its computation.
This means that simply updating a cell in board itself is not a correct implementation
of the result function. You’ll likely want to make a deep copy of the board first before
making any changes.

 The winner function should accept a board as input, and return the winner of the board if
there is one.
o If the X player has won the game, your function should return X. If the O player has

won the game, your function should return O.
o One can win the game with three of their moves in a row horizontally, vertically, or

diagonally.
o You may assume that there will be at most one winner (that is, no board will ever

have both players with three-in-a-row, since that would be an invalid board state).
o If there is no winner of the game (either because the game is in progress, or because

it ended in a tie), the function should return None.

 The terminal function should accept a board as input, and return a boolean value indicating
whether the game is over.
o If the game is over, either because someone has won the game or because all cells

have been filled without anyone winning, the function should return True.
o Otherwise, the function should return False if the game is still in progress.

 The utility function should accept a terminal board as input and output the utility of the
board.
o If X has won the game, the utility is 1. If O has won the game, the utility is -1. If the

game has ended in a tie, the utility is 0.
o You may assume utility will only be called on a board if terminal(board) is True.

 The minimax function should take a board as input, and return the optimal move for the
player to move on that board.
o The move returned should be the optimal action (i, j) that is one of the allowable

actions on the board. If multiple moves are equally optimal, any of those moves is
acceptable.

o If the board is a terminal board, the minimax function should return None.

For all functions that accept a board as input, you may assume that it is a valid board (namely,
that it is a list that contains three rows, each with three values of either X, O, or EMPTY). You
should not modify the function declarations (the order or number of arguments to each function)
provided.

Once all functions are implemented correctly, you should be able to run python runner.py and
play against your AI. And, since Tic-Tac-Toe is a tie given optimal play by both sides, you should
never be able to beat the AI (though if you don’t play optimally as well, it may beat you!)

Implementation Hints

 If you’d like to test your functions in a different Python file, you can import them with lines
like from tictactoe import initial_state.

 You’re welcome to add additional helper functions to tictactoe.py, provided that their
names do not collide with function or variable names already in the module.

 Alpha-beta pruning is optional, but may make your AI run more efficiently!

	Algorithms Review
	Description
	Introduction
	Understanding the Environment
	Task Specification
	Implementation Hints

