\[\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bff}{\mathbf{f}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bi}{\mathbf{i}}
\newcommand{\bj}{\mathbf{j}}
\newcommand{\bk}{\mathbf{k}}
\newcommand{\bN}{\mathbf{N}}
\newcommand{\bn}{\mathbf{n}}
\newcommand{\bo}{\mathbf{0}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bs}{\mathbf{s}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\nv}{\mathbf{0}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\pv}{\overline}
\newcommand{\iu}{\mathrm{i}}
\newcommand{\ju}{\mathrm{j}}
\newcommand{\im}{\mathrm{i}}
\newcommand{\e}{\mathrm{e}}
\newcommand{\real}{\operatorname{Re}}
\newcommand{\imag}{\operatorname{Im}}
\newcommand{\Arg}{\operatorname{Arg}}
\newcommand{\Ln}{\operatorname{Ln}}
\DeclareMathOperator*{\res}{res}
\newcommand{\re}{\operatorname{Re}}
\newcommand{\im}{\operatorname{Im}}
\newcommand{\arsinh}{\operatorname{ar\,sinh}}
\newcommand{\arcosh}{\operatorname{ar\,cosh}}
\newcommand{\artanh}{\operatorname{ar\,tanh}}
\newcommand{\sgn}{\operatorname{sgn}}
\newcommand{\diag}{\operatorname{diag}}
\newcommand{\proj}{\operatorname{proj}}
\newcommand{\rref}{\operatorname{rref}}
\newcommand{\rank}{\operatorname{rank}}
\newcommand{\Span}{\operatorname{span}}
\newcommand{\vir}{\operatorname{span}}
\renewcommand{\dim}{\operatorname{dim}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\geom}{\operatorname{geom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\newcommand{\tp}[1]{#1^{\top}}
\renewcommand{\d}{\mathrm{d}}
\newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}}
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]}
\newcommand{\piste}{\cdot}
\newcommand{\qedhere}{}
\newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]}
\newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]}
\newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|}
\newcommand{\trans}{\mathrm{T}}
\newcommand{\EUR}{\text{\unicode{0x20AC}}}
\newcommand{\SI}[3][]{#2\,\mathrm{#3}}
\newcommand{\si}[2][]{\mathrm{#2}}
\newcommand{\num}[2][]{#2}
\newcommand{\ang}[2][]{#2^{\circ}}
\newcommand{\meter}{m}
\newcommand{\metre}{\meter}
\newcommand{\kilo}{k}
\newcommand{\kilogram}{kg}
\newcommand{\gram}{g}
\newcommand{\squared}{^2}
\newcommand{\cubed}{^3}
\newcommand{\minute}{min}
\newcommand{\hour}{h}
\newcommand{\second}{s}
\newcommand{\degreeCelsius}{^{\circ}C}
\newcommand{\per}{/}
\newcommand{\centi}{c}
\newcommand{\milli}{m}
\newcommand{\deci}{d}
\newcommand{\percent}{\%}
\newcommand{\Var}{\operatorname{Var}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Corr}{\operatorname{Corr}}
\newcommand{\Tasd}{\operatorname{Tasd}}
\newcommand{\Ber}{\operatorname{Ber}}
\newcommand{\Bin}{\operatorname{Bin}}
\newcommand{\Geom}{\operatorname{Geom}}
\newcommand{\Poi}{\operatorname{Poi}}
\newcommand{\Hyperg}{\operatorname{Hyperg}}
\newcommand{\Tas}{\operatorname{Tas}}
\newcommand{\Exp}{\operatorname{Exp}}
\newcommand{\tdist}{\operatorname{t}}
\newcommand{\rd}{\mathrm{d}}\]
Käyrän tangentti ja normaali
Derivaatan graafinen tulkinta on käyrälle piirretyn tangentin kulmakerroin. Näin ollen derivaatan avulla voidaan selvittää käyrälle piirretyn tangentin ja toisaalta myös normaalin yhtälö.
Olkoon käyrä \(y = f( x )\). Tällöin pisteeseen \(( a, f( a ))\) piirretyn tangentin yhtälö on
\[y - f( a ) = f'( a )(x - a),\]
missä tangentin kulmakerroin on \(k_T = f'( a )\). Koska normaali on kohtisuorassa tangenttia vasten, niin pätee normaalin kulmakertoimelle
\[k_N \cdot k_T = -1 \quad \Leftrightarrow \quad k_N = - \frac{1}{k_t} \quad \Leftrightarrow \quad k_N = - \frac{1}{f'( a ) }.\]
Tällöin normaalin yhtälö on
\[y - f( a ) = \frac{1}{f'( a ) }(x - a).\]
Esimerkki 3.1.1
Määritä käyrän \(y = 3x^2 + x\) pisteeseen \((-1, 2)\) asetetun tangentin ja normaalin yhtälö.
Piilota/näytä ratkaisu
Suoran yhtälön määrittämiseen tarvitaan suoran kulmakerroin ja yksi suoran piste. Tehtävässä on annettu yksi piste, joten nyt täytyy vielä määrittää kyseisen suoran kulmakerroin.
Tangentin kulmakerroin saadaan derivaatan avulla
\[y' = 3\cdot 2x + 1 = 6x + 1
,\]
joten
\[k_T = y'( -1 ) = 6 \cdot (-1) + 1 = -6 + 1 = -5
.\]
Tangentin yhtälöön sijoittamalla piste ja saatu kulmakerroin saadaan
\[\begin{split}\begin{aligned}
&y - 2 = -5( x - ( -1 ) ) \\
\Leftrightarrow \quad &y - 2= -5( x + 1 ) \\
\Leftrightarrow \quad &y - 2 = -5x - 5 \\
\Leftrightarrow \quad &y = -5x - 5 + 2 \\
\Leftrightarrow \quad &y = -5x - 3
.\end{aligned}\end{split}\]
Normaalin kulmakerroin on täten
\[k_N = - \frac{1}{y'( -1 ) } = \frac{1}{5}\]
ja normaalin yhtälö suoraan sijoittamalla
\[\begin{split}\begin{aligned}
&y - 2 = \frac{1}{5}( x - ( -1 ) ) \\
\Leftrightarrow \quad &y - 2= \frac{1}{5}( x + 1 ) \\
\Leftrightarrow \quad &y - 2 = \frac{1}{5}x + \frac{1}{5} \\
\Leftrightarrow \quad &y = \frac{1}{5}x + \frac{1}{5} + 2 \\
\Leftrightarrow \quad &y = \frac{1}{5}x + \frac{11}{5}
.\end{aligned}\end{split}\]
Siis tangentin yhtälö on \(y = -5x - 3\) ja normaalin yhtälö on \(y = \frac{1}{5}x + \frac{11}{5}\).