$\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bff}{\mathbf{f}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bi}{\mathbf{i}} \newcommand{\bj}{\mathbf{j}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bn}{\mathbf{n}} \newcommand{\bo}{\mathbf{0}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bs}{\mathbf{s}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\nv}{\mathbf{0}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\rA}{\mathrm{A}} \newcommand{\rB}{\mathrm{B}} \newcommand{\rC}{\mathrm{C}} \newcommand{\rD}{\mathrm{D}} \newcommand{\rE}{\mathrm{E}} \newcommand{\rF}{\mathrm{F}} \newcommand{\rG}{\mathrm{G}} \newcommand{\rH}{\mathrm{H}} \newcommand{\rI}{\mathrm{I}} \newcommand{\rJ}{\mathrm{J}} \newcommand{\rK}{\mathrm{K}} \newcommand{\rL}{\mathrm{L}} \newcommand{\rM}{\mathrm{M}} \newcommand{\rN}{\mathrm{N}} \newcommand{\rO}{\mathrm{O}} \newcommand{\rP}{\mathrm{P}} \newcommand{\rQ}{\mathrm{Q}} \newcommand{\rR}{\mathrm{R}} \newcommand{\rS}{\mathrm{S}} \newcommand{\rT}{\mathrm{T}} \newcommand{\rU}{\mathrm{U}} \newcommand{\rV}{\mathrm{V}} \newcommand{\rW}{\mathrm{W}} \newcommand{\rX}{\mathrm{X}} \newcommand{\rY}{\mathrm{Y}} \newcommand{\rZ}{\mathrm{Z}} \newcommand{\pv}{\overline} \newcommand{\iu}{\mathrm{i}} \newcommand{\ju}{\mathrm{j}} \newcommand{\im}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imag}{\operatorname{Im}} \newcommand{\Arg}{\operatorname{Arg}} \newcommand{\Ln}{\operatorname{Ln}} \DeclareMathOperator*{\res}{res} \newcommand{\re}{\operatorname{Re}} \newcommand{\im}{\operatorname{Im}} \newcommand{\arsinh}{\operatorname{ar\,sinh}} \newcommand{\arcosh}{\operatorname{ar\,cosh}} \newcommand{\artanh}{\operatorname{ar\,tanh}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\proj}{\operatorname{proj}} \newcommand{\rref}{\operatorname{rref}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\Span}{\operatorname{span}} \newcommand{\vir}{\operatorname{span}} \renewcommand{\dim}{\operatorname{dim}} \newcommand{\alg}{\operatorname{alg}} \newcommand{\geom}{\operatorname{geom}} \newcommand{\id}{\operatorname{id}} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\tp}[1]{#1^{\top}} \renewcommand{\d}{\mathrm{d}} \newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]} \newcommand{\piste}{\cdot} \newcommand{\qedhere}{} \newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]} \newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]} \newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|} \newcommand{\trans}{\mathrm{T}} \newcommand{\EUR}{\text{\unicode{0x20AC}}} \newcommand{\SI}[3][]{#2\,\mathrm{#3}} \newcommand{\si}[2][]{\mathrm{#2}} \newcommand{\num}[2][]{#2} \newcommand{\ang}[2][]{#2^{\circ}} \newcommand{\meter}{m} \newcommand{\metre}{\meter} \newcommand{\kilo}{k} \newcommand{\kilogram}{kg} \newcommand{\gram}{g} \newcommand{\squared}{^2} \newcommand{\cubed}{^3} \newcommand{\minute}{min} \newcommand{\hour}{h} \newcommand{\second}{s} \newcommand{\degreeCelsius}{^{\circ}C} \newcommand{\per}{/} \newcommand{\centi}{c} \newcommand{\milli}{m} \newcommand{\deci}{d} \newcommand{\percent}{\%} \newcommand{\Var}{\operatorname{Var}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Corr}{\operatorname{Corr}} \newcommand{\Tasd}{\operatorname{Tasd}} \newcommand{\Ber}{\operatorname{Ber}} \newcommand{\Bin}{\operatorname{Bin}} \newcommand{\Geom}{\operatorname{Geom}} \newcommand{\Poi}{\operatorname{Poi}} \newcommand{\Hyperg}{\operatorname{Hyperg}} \newcommand{\Tas}{\operatorname{Tas}} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\tdist}{\operatorname{t}} \newcommand{\rd}{\mathrm{d}}$

# Integraalifunktio¶

Olkoon seuraavassa $$I\subset\R$$ (rajoitettu tai rajoittamaton) reaalilukuväli.

Määritelmä 6.2.1

Funktio $$F : I\to\R$$ on funktion $$f : I\to\R$$ integraalifunktio eli antiderivaatta (antiderivative) välillä $$I$$, jos $$F'(x)=f(x)$$ kaikilla välin $$I$$ pisteillä $$x$$.

Esimerkki 6.2.2

Olkoon $$f(x)=2x+1$$. Silloin esimerkiksi $$F(x)=x^2+x-4$$ ja $$G(x)=x^2+x+8$$ ovat funktion $$f$$ integraalifunktioita, koska $$F'(x)=f(x)$$ ja $$G'(x)=f(x)$$.

Esimerkki näyttää, että integraalifunktio ei ole yksikäsitteinen. Eri integraalifunktiot eroavat toisistaan kuitenkin vain vakion osalta. Tämä tarkoittaa käytännössä sitä, että jos löydetään yksikin integraalifunktio, on löydetty ne kaikki.

Lause 6.2.3

Olkoon $$F$$ jokin funktion $$f$$ integraalifunktio välillä $$I$$. Tällöin jokainen funktion $$f$$ integraalifunktio voidaan esittää muodossa $$G(x)=F(x)+C$$, missä $$C\in\R$$. Vakiota $$C$$ kutsutaan integroimisvakioksi.

Piilota/näytä todistus

Olkoot $$F$$ ja $$G$$ funktion $$f$$ integraalifunktioita välillä $$I$$. Merkitään $$H(x)=G(x)-F(x)$$. Silloin

$H'(x)=G'(x)-F'(x)=f(x)-f(x)=0.$

Differentiaalilaskennan väliarvolauseen seurauslauseen mukaan $$H$$ on silloin vakiofunktio, eli $$H(x)=G(x)-F(x)=C$$ jollain reaalivakiolla $$C$$.

Määritelmä 6.2.4

Funktion $$f : I\to\R$$ integroimisella tarkoitetaan kaikkien funktion $$f$$ integraalifunktioiden määrittämistä välillä $$I$$. Funktion $$f$$ integraalifunktiolle $$F$$ käytetään merkintää

$F(x)=\int f(x)\,\d x.$

Integroitavaa funktiota $$f$$ kutsutaan integrandiksi. Merkinnän katsotaan sisältävän kaikki funktion $$f$$ integraalifunktiot, joten integroimisvakiota ei tässä merkinnässä yleensä kirjoiteta näkyviin.

Esimerkki 6.2.5

Integroinnin tulokset voi tarkastaa derivoimalla. Esimerkiksi derivoimalla on helppo todeta, että

\begin{split}\begin{aligned} \int13x^3\,\d x&=\frac{13}{4}x^4+C,\\ \int\sin(3x)\,\d x&=-\frac13\cos(3x)+C \text{ ja}\\ \int e^{-9x}\,\d x&=-\frac19e^{-9x}+C. \end{aligned}\end{split}

Integraalifunktion määritelmästä ja sen vakiota vailla yksikäsitteisyydestä seuraa suoraan, että integrointi ja derivointi ovat käänteisiä operaatioita. Toisin sanoen, mikäli funktiolla $$f$$ on integraalifunktio välillä $$I$$, niin

$D\int f(x)\,\d x=f(x)$

ja mikäli $$f$$ on derivoituva välillä $$I$$, niin

$\int f'(x)\,\d x=f(x)+C.$
Funktion $$f$$ toinen derivaatta on $$f''(x)=6x+2$$. Mikä seuraavista on yleisessä tapauksessa funktio $$f$$? Alla isoilla kirjaimilla esitetään mitä tahansa reaalilukuja.

Yllä olevan lisäksi tiedetään, että $$f(1)=1$$ ja $$f'(1)=3$$.

Mikä on vakion $$C$$ arvo?
Millä korkeudella funktio $$f(x)$$ leikkaa $$y$$-akselia?
Mikä seuraavista on totta? Ehdon $$f(1)=1$$ toteuttavan integraalifunktion kuvaaja on $$xy$$-tasolla ehdon $$f(1)=0$$ toteuttavaa integraalifunktion kuvaajaa

Integraalifunktioista puhuttaessa on oleellista, että tarkastelujoukkona $$I$$ on väli, kuten seuraava esimerkki osoittaa.

Esimerkki 6.2.6

Funktioille $$F(x)=1$$ ja

$\begin{split}G(x)=\begin{cases} 0,&\text{kun }x<0\\ 1,&\text{kun }x>0 \end{cases}\end{split}$

on $$F'(x)=G'(x)=0$$ kaikilla $$x\ne0$$, mutta silti $$F(x)\ne G(x)+C$$.

Seuraavassa lauseessa todetaan, että integrointi on lineaarinen operaatio, eli se toteuttaa samat vakion siirron ja summan laskusäännöt kuin derivaattakin.

Lause 6.2.7

Olkoot $$f,g : I \to \R$$ funktioita ja $$c$$ reaaliluku. Tällöin

\begin{split}\begin{aligned} \int cf(x)\,\d x&=c\int f(x)\,\d x,\\ \int(f(x)+g(x))\,\d x&=\int f(x)\,\d x+\int g(x)\,\d x. \end{aligned}\end{split}
Piilota/näytä todistus
Väitteet seuraavat suoraan derivoinnin lineaarisuudesta. Jos $$F(x)$$ on funktion $$f(x)$$ jokin integraalifunktio, niin $$cf(x)=c(DF(x))=D(cF(x))$$, joten funktiolla $$cf(x)$$ on integraalifunktio $$cF(x)$$. Toinen väite vastaavasti.

Esimerkki 6.2.8

Lineaarisuutta käyttäen

\begin{split}\begin{aligned} \int 2x(\sqrt{x}-1)\,\d x&=\int\big(2x^{3/2}-2x\big)\,\d x =2\int x^{3/2}\,\d x-\int2x\,\d x\\ &=2\cdot\frac25x^{5/2}-x^2+C =\frac45 x^2\sqrt{x}-x^2+C. \end{aligned}\end{split}

Kaikilla funktioilla ei ole integraalifunktiota.

Esimerkki 6.2.9

Olkoon funktio $$f : \R\to\R$$ määritelty asettamalla

$\begin{split}f(x)=\begin{cases} 0, &\text{kun}\ x<0\\ 1, &\text{kun}\ x\ge0. \end{cases}\end{split}$

Oletetaan, että sillä on integraalifunktio $$F : \R\to\R$$. Silloin

$\begin{split}F(x)=\begin{cases} C, &\text{kun}\ x<0\\ x+D, &\text{kun}\ x>0. \end{cases}\end{split}$

Koska $$F$$ on derivoituva pisteessä $$x=0$$, niin $$F$$ on jatkuva pisteessä $$x=0$$ ja siis $$C=D$$. Nyt funktion $$F$$ kuvaajalla on kulma pisteessä $$x=0$$, eikä $$F$$ täten ole derivoituva, kun $$x=0$$. Tämä ristiriita osoittaa, että funktiolla $$f$$ ei voi olla integraalifunktiota.

Integraalifunktion olemassaoloa ei ehditä tässä tutkimaan tarkemmin. Hyvä uutinen on, että jokaisella jatkuvalla funktiolla (ja monilla muillakin funktioilla) on integraalifunktio. Huono uutinen on, että monesti yksinkertaisenkaan näköisen jatkuvan funktion $$f$$ integraalifunktiota $$F$$ ei voida esittää äärellisen monen alkeisfunktion avulla. Tällaisia funktioita ovat esimerkiksi

$\frac{\sin x}{x},\qquad\frac{1}{\ln x},\qquad\frac{e^x}{x}\qquad \text{ja}\qquad e^{x^2}.$

Seuraavassa integrointitekniikkaan omistautuneessa luvussa käydään läpi joitakin tapoja laskea integraalifunktio silloin, kun sille on lauseke olemassa.

Palautusta lähetetään...