\[\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bff}{\mathbf{f}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bi}{\mathbf{i}} \newcommand{\bj}{\mathbf{j}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bn}{\mathbf{n}} \newcommand{\bo}{\mathbf{0}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bs}{\mathbf{s}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\nv}{\mathbf{0}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\rA}{\mathrm{A}} \newcommand{\rB}{\mathrm{B}} \newcommand{\rC}{\mathrm{C}} \newcommand{\rD}{\mathrm{D}} \newcommand{\rE}{\mathrm{E}} \newcommand{\rF}{\mathrm{F}} \newcommand{\rG}{\mathrm{G}} \newcommand{\rH}{\mathrm{H}} \newcommand{\rI}{\mathrm{I}} \newcommand{\rJ}{\mathrm{J}} \newcommand{\rK}{\mathrm{K}} \newcommand{\rL}{\mathrm{L}} \newcommand{\rM}{\mathrm{M}} \newcommand{\rN}{\mathrm{N}} \newcommand{\rO}{\mathrm{O}} \newcommand{\rP}{\mathrm{P}} \newcommand{\rQ}{\mathrm{Q}} \newcommand{\rR}{\mathrm{R}} \newcommand{\rS}{\mathrm{S}} \newcommand{\rT}{\mathrm{T}} \newcommand{\rU}{\mathrm{U}} \newcommand{\rV}{\mathrm{V}} \newcommand{\rW}{\mathrm{W}} \newcommand{\rX}{\mathrm{X}} \newcommand{\rY}{\mathrm{Y}} \newcommand{\rZ}{\mathrm{Z}} \newcommand{\pv}{\overline} \newcommand{\iu}{\mathrm{i}} \newcommand{\ju}{\mathrm{j}} \newcommand{\im}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imag}{\operatorname{Im}} \newcommand{\Arg}{\operatorname{Arg}} \newcommand{\Ln}{\operatorname{Ln}} \DeclareMathOperator*{\res}{res} \newcommand{\re}{\operatorname{Re}} \newcommand{\im}{\operatorname{Im}} \newcommand{\arsinh}{\operatorname{ar\,sinh}} \newcommand{\arcosh}{\operatorname{ar\,cosh}} \newcommand{\artanh}{\operatorname{ar\,tanh}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\proj}{\operatorname{proj}} \newcommand{\rref}{\operatorname{rref}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\Span}{\operatorname{span}} \newcommand{\vir}{\operatorname{span}} \renewcommand{\dim}{\operatorname{dim}} \newcommand{\alg}{\operatorname{alg}} \newcommand{\geom}{\operatorname{geom}} \newcommand{\id}{\operatorname{id}} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\tp}[1]{#1^{\top}} \renewcommand{\d}{\mathrm{d}} \newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]} \newcommand{\piste}{\cdot} \newcommand{\qedhere}{} \newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]} \newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]} \newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|} \newcommand{\trans}{\mathrm{T}} \newcommand{\EUR}{\text{\unicode{0x20AC}}} \newcommand{\SI}[3][]{#2\,\mathrm{#3}} \newcommand{\si}[2][]{\mathrm{#2}} \newcommand{\num}[2][]{#2} \newcommand{\ang}[2][]{#2^{\circ}} \newcommand{\meter}{m} \newcommand{\metre}{\meter} \newcommand{\kilo}{k} \newcommand{\kilogram}{kg} \newcommand{\gram}{g} \newcommand{\squared}{^2} \newcommand{\cubed}{^3} \newcommand{\minute}{min} \newcommand{\hour}{h} \newcommand{\second}{s} \newcommand{\degreeCelsius}{^{\circ}C} \newcommand{\per}{/} \newcommand{\centi}{c} \newcommand{\milli}{m} \newcommand{\deci}{d} \newcommand{\percent}{\%} \newcommand{\Var}{\operatorname{Var}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Corr}{\operatorname{Corr}} \newcommand{\Tasd}{\operatorname{Tasd}} \newcommand{\Ber}{\operatorname{Ber}} \newcommand{\Bin}{\operatorname{Bin}} \newcommand{\Geom}{\operatorname{Geom}} \newcommand{\Poi}{\operatorname{Poi}} \newcommand{\Hyperg}{\operatorname{Hyperg}} \newcommand{\Tas}{\operatorname{Tas}} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\tdist}{\operatorname{t}} \newcommand{\rd}{\mathrm{d}}\]

L’Hôpitalin sääntö

Raja-arvojen yhteydessä esiteltiin epämääräisiä muotoja. Jos raja-arvoa etsittäessä saadaan epämääräinen muoto \(\frac00\) tai \(\frac{\infty}{\infty}\), voidaan se yrittää määrittää derivointiin perustuvalla l’Hôpitalin säännöksi kutsutulla menetelmällä.

Lause 5.5.1 (l’Hôpitalin sääntö)

Olkoot \(f\) ja \(g\) derivoituvia funktioita ja \(g'(x)\ne0\) jossakin pisteen \(a\) punkteeratussa ympäristössä. Jos

\[\lim_{x\to a}f(x)=0=\lim_{x\to a}g(x),\]

niin

\[\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},\]

mikäli jälkimmäinen raja-arvo on olemassa. Vastaavat tulokset ovat voimassa myös tapauksissa \(a=\pm\infty\) ja \(\displaystyle\lim_{x\to a}f(x)=\infty=\lim_{x\to a}g(x)\).

Piilota/näytä todistus

Rajoitutaan todistamaan väite siinä tapauksessa, kun \(f\) ja \(g\) ovat derivoituvia myös pisteessä \(a\), \(g'(a)\ne0\) ja \(f'\) ja \(g'\) ovat jatkuvia. Silloin \(f\) ja \(g\) ovat jatkuvia pisteessä \(a\), joten oletuksen vuoksi on oltava \(f(a)=g(a)=0\). Derivaatan määritelmän nojalla

\[\lim_{x\to a}\frac{f'(x)}{g'(x)} =\frac{\lim\limits_{x\to a}f'(x)}{\lim\limits_{x\to a}g'(x)} =\frac{f'(a)}{g'(a)}=\frac{\lim\limits_{x\to a}\dfrac{f(x)-f(a)}{x-a}}{\lim\limits_{x\to a}\dfrac{g(x)-g(a)}{x-a}} =\lim_{x \to a}\frac{f(x)}{g(x)}\lim_{x \to a}\frac{x - a}{x - a} =\lim_{x\to a}\frac{f(x)}{g(x)}.\]

Tässä toisessa välivaiheessa käytetään lausetta 5.6.18, joka todistetaan myöhemmin.

Esimerkki 5.5.2

  1. \(\displaystyle\lim_{x\to1}\frac{\ln x}{x^2-1} \stackrel{\frac{0}{0}}{=} \lim_{x\to 1} \frac{D_x(\ln x)}{D_x(x^2-1)} = \lim_{x\to1}\frac{\frac{1}{x}}{2x} =\lim_{x\to1}\frac{1}{2x^2} =\frac{1}{2}\).
  2. \(\displaystyle\lim_{x\to\infty}\frac{\ln(2x)}{\ln x} \stackrel{\frac{\infty}{\infty}}{=} \lim_{x\to\infty}\frac{\frac{2}{2x}}{\frac{1}{x}} =\lim_{x\to\infty}1=1\).
  3. \(\displaystyle\lim_{x\to0}\frac{x-\sin x}{x^3} \stackrel{\frac{0}{0}}{=} \lim_{x\to0}\frac{1-\cos x}{3x^2} \stackrel{\frac{0}{0}}{=} \lim_{x\to0}\frac{\sin x}{6x} \stackrel{\frac{0}{0}}{=} \lim_{x\to0}\frac{\cos x}{6} =\frac16\).

Huomautus 5.5.3

  1. On syytä muistaa, että l’Hôpitalin sääntö sopii vain tapauksiin \(\frac00\) tai \(\frac{\infty}{\infty}\), ei esimerkiksi tapauksiin \(\frac01\) tai \(\frac\infty0\). Tarvittaessa funktion lauseketta voi muokata siten, että haluttu epämääräinen muoto syntyy suoralla sijoituksella, ja sen jälkeen soveltaa sääntöä.
  2. L’Hôpitalin säännössä esiintyvää derivaattojen osamäärän raja-arvoa varten lasketaan osoittajan ja nimittäjän derivaatat erikseen, eikä osamäärän derivaattaa.
  3. L’Hôpitalin sääntöä saa soveltaa toistuvasti, kunnes raja-arvo ei enää suoran sijoituksen jälkeen ole epämääräisessä muodossa (kts. edellisen esimerkin kohta 3).

Esimerkki 5.5.4

Olkoon \(n\) luonnollinen luku. Tutkitaan raja-arvoa \(\displaystyle\lim_{x\to\infty}\frac{e^x}{x^n}\) soveltamalla toistuvasti l’Hôpitalin sääntöä.

\[\begin{split}\begin{aligned} &\lim_{x\to\infty}\frac{e^x}{x^n} =\lim_{x\to\infty}\frac{e^x}{nx^{n-1}} =\lim_{x\to\infty}\frac{e^x}{n(n-1)x^{n-2}} =\lim_{x\to\infty}\frac{e^x}{n(n-1)(n-2)x^{n-3}}\\ &=\cdots =\lim_{x\to\infty}\frac{e^x}{n(n-1)(n-2)\cdots 2x^1} =\lim_{x\to\infty}\frac{e^x}{n(n-1)(n-2)\cdots 2\cdot1} =\infty. \end{aligned}\end{split}\]

Sama tulos on voimassa muillekin kuin reaaliluvun \(x\) kokonaislukueksponenteille,

\[\lim_{x\to\infty}\frac{e^x}{x^a}=\infty,\]

kun \(a > 0\). Vastaasti voidaan osoittaa, että

\[\lim_{x\to\infty}\frac{x^a}{\ln x}=\infty,\]

kun \(a > 0\).

Edellisen esimerkin vertailut antavat keinon asettaa eksponentti-, potenssi- ja logaritmifunktiot kasvunopeuden suhteen järjestykseen.

Huomautus 5.5.5

Olkoon \(a>0\). Tällöin

  1. eksponenttifunktio \(e^x\) kasvaa nopeammin kuin mikään potenssifunktio \(x^a\), ja
  2. logaritmifunktio \(\ln x\) kasvaa hitaammin kuin mikään potenssifunktio \(x^a\).
Voidaanko l’Hôpitalin sääntöä käyttää toispuoleisten raja-arvojen laskemiseen. Toisin sanoen, voidaanko säännön todistuksessa oleva päättely toistaa esimerkiksi tapauksessa \(a\to 0+\)?

Miksi l’Hôpitalin sääntöä ei voi käyttää raja-arvon

\[\lim\limits_{x\to \infty} \dfrac{x+\sin{x}}{x}\]

laskemiseen? Merkitään vaihtoehdoissa \(f(x)=x+\sin{x}\) ja \(g(x)=x\).

Jos l’Hôpitalin sääntöä ei voi käyttää, voidaanko yllä esitetty raja-arvo silti laskea? Raja-arvo muokattuna on

\[\lim_{x\to \infty} \left( 1 + \frac{\sin{x}}{x} \right),\]

joten

Mitä voidaan sanoa luvun viimeisen esimerkin perusteella raja-arvosta

\[\lim_{x\to \infty} \frac{\ln{x}}{e^x}?\]
Palautusta lähetetään...