Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bff}{\mathbf{f}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bi}{\mathbf{i}} \newcommand{\bj}{\mathbf{j}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bn}{\mathbf{n}} \newcommand{\bo}{\mathbf{0}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bs}{\mathbf{s}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\nv}{\mathbf{0}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\rA}{\mathrm{A}} \newcommand{\rB}{\mathrm{B}} \newcommand{\rC}{\mathrm{C}} \newcommand{\rD}{\mathrm{D}} \newcommand{\rE}{\mathrm{E}} \newcommand{\rF}{\mathrm{F}} \newcommand{\rG}{\mathrm{G}} \newcommand{\rH}{\mathrm{H}} \newcommand{\rI}{\mathrm{I}} \newcommand{\rJ}{\mathrm{J}} \newcommand{\rK}{\mathrm{K}} \newcommand{\rL}{\mathrm{L}} \newcommand{\rM}{\mathrm{M}} \newcommand{\rN}{\mathrm{N}} \newcommand{\rO}{\mathrm{O}} \newcommand{\rP}{\mathrm{P}} \newcommand{\rQ}{\mathrm{Q}} \newcommand{\rR}{\mathrm{R}} \newcommand{\rS}{\mathrm{S}} \newcommand{\rT}{\mathrm{T}} \newcommand{\rU}{\mathrm{U}} \newcommand{\rV}{\mathrm{V}} \newcommand{\rW}{\mathrm{W}} \newcommand{\rX}{\mathrm{X}} \newcommand{\rY}{\mathrm{Y}} \newcommand{\rZ}{\mathrm{Z}} \newcommand{\pv}{\overline} \newcommand{\iu}{\mathrm{i}} \newcommand{\ju}{\mathrm{j}} \newcommand{\im}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imag}{\operatorname{Im}} \newcommand{\Arg}{\operatorname{Arg}} \newcommand{\Ln}{\operatorname{Ln}} \DeclareMathOperator*{\res}{res} \newcommand{\re}{\operatorname{Re}} \newcommand{\im}{\operatorname{Im}} \newcommand{\arsinh}{\operatorname{ar\,sinh}} \newcommand{\arcosh}{\operatorname{ar\,cosh}} \newcommand{\artanh}{\operatorname{ar\,tanh}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\proj}{\operatorname{proj}} \newcommand{\rref}{\operatorname{rref}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\Span}{\operatorname{span}} \newcommand{\vir}{\operatorname{span}} \renewcommand{\dim}{\operatorname{dim}} \newcommand{\alg}{\operatorname{alg}} \newcommand{\geom}{\operatorname{geom}} \newcommand{\id}{\operatorname{id}} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\tp}[1]{#1^{\top}} \renewcommand{\d}{\mathrm{d}} \newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]} \newcommand{\piste}{\cdot} \newcommand{\qedhere}{} \newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]} \newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]} \newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|} \newcommand{\trans}{\mathrm{T}} \newcommand{\EUR}{\text{\unicode{0x20AC}}} \newcommand{\SI}[3][]{#2\,\mathrm{#3}} \newcommand{\si}[2][]{\mathrm{#2}} \newcommand{\num}[2][]{#2} \newcommand{\ang}[2][]{#2^{\circ}} \newcommand{\meter}{m} \newcommand{\metre}{\meter} \newcommand{\kilo}{k} \newcommand{\kilogram}{kg} \newcommand{\gram}{g} \newcommand{\squared}{^2} \newcommand{\cubed}{^3} \newcommand{\minute}{min} \newcommand{\hour}{h} \newcommand{\second}{s} \newcommand{\degreeCelsius}{^{\circ}C} \newcommand{\per}{/} \newcommand{\centi}{c} \newcommand{\milli}{m} \newcommand{\deci}{d} \newcommand{\percent}{\%} \newcommand{\Var}{\operatorname{Var}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Corr}{\operatorname{Corr}} \newcommand{\Tasd}{\operatorname{Tasd}} \newcommand{\Ber}{\operatorname{Ber}} \newcommand{\Bin}{\operatorname{Bin}} \newcommand{\Geom}{\operatorname{Geom}} \newcommand{\Poi}{\operatorname{Poi}} \newcommand{\Hyperg}{\operatorname{Hyperg}} \newcommand{\Tas}{\operatorname{Tas}} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\tdist}{\operatorname{t}} \newcommand{\rd}{\mathrm{d}}

L’Hôpitalin sääntö

Raja-arvojen yhteydessä esiteltiin epämääräisiä muotoja. Jos raja-arvoa etsittäessä saadaan epämääräinen muoto \frac00 tai \frac{\infty}{\infty}, voidaan se yrittää määrittää derivointiin perustuvalla l’Hôpitalin säännöksi kutsutulla menetelmällä.

Lause 5.5.1 (l’Hôpitalin sääntö)

Olkoot f ja g derivoituvia funktioita ja g'(x)\ne0 jossakin pisteen a punkteeratussa ympäristössä. Jos

\lim_{x\to a}f(x)=0=\lim_{x\to a}g(x),

niin

\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},

mikäli jälkimmäinen raja-arvo on olemassa. Vastaavat tulokset ovat voimassa myös tapauksissa a=\pm\infty ja \displaystyle\lim_{x\to a}f(x)=\infty=\lim_{x\to a}g(x).

Piilota/näytä todistus

Rajoitutaan todistamaan väite siinä tapauksessa, kun f ja g ovat derivoituvia myös pisteessä a, g'(a)\ne0 ja f' ja g' ovat jatkuvia. Silloin f ja g ovat jatkuvia pisteessä a, joten oletuksen vuoksi on oltava f(a)=g(a)=0. Derivaatan määritelmän nojalla

\lim_{x\to a}\frac{f'(x)}{g'(x)} =\frac{\lim\limits_{x\to a}f'(x)}{\lim\limits_{x\to a}g'(x)} =\frac{f'(a)}{g'(a)}=\frac{\lim\limits_{x\to a}\dfrac{f(x)-f(a)}{x-a}}{\lim\limits_{x\to a}\dfrac{g(x)-g(a)}{x-a}} =\lim_{x \to a}\frac{f(x)}{g(x)}\lim_{x \to a}\frac{x - a}{x - a} =\lim_{x\to a}\frac{f(x)}{g(x)}.

Tässä toisessa välivaiheessa käytetään lausetta 5.6.18, joka todistetaan myöhemmin.

Esimerkki 5.5.2

  1. \displaystyle\lim_{x\to1}\frac{\ln x}{x^2-1} \stackrel{\frac{0}{0}}{=} \lim_{x\to 1} \frac{D_x(\ln x)}{D_x(x^2-1)} = \lim_{x\to1}\frac{\frac{1}{x}}{2x} =\lim_{x\to1}\frac{1}{2x^2} =\frac{1}{2}.
  2. \displaystyle\lim_{x\to\infty}\frac{\ln(2x)}{\ln x} \stackrel{\frac{\infty}{\infty}}{=} \lim_{x\to\infty}\frac{\frac{2}{2x}}{\frac{1}{x}} =\lim_{x\to\infty}1=1.
  3. \displaystyle\lim_{x\to0}\frac{x-\sin x}{x^3} \stackrel{\frac{0}{0}}{=} \lim_{x\to0}\frac{1-\cos x}{3x^2} \stackrel{\frac{0}{0}}{=} \lim_{x\to0}\frac{\sin x}{6x} \stackrel{\frac{0}{0}}{=} \lim_{x\to0}\frac{\cos x}{6} =\frac16.

Huomautus 5.5.3

  1. On syytä muistaa, että l’Hôpitalin sääntö sopii vain tapauksiin \frac00 tai \frac{\infty}{\infty}, ei esimerkiksi tapauksiin \frac01 tai \frac\infty0. Tarvittaessa funktion lauseketta voi muokata siten, että haluttu epämääräinen muoto syntyy suoralla sijoituksella, ja sen jälkeen soveltaa sääntöä.
  2. L’Hôpitalin säännössä esiintyvää derivaattojen osamäärän raja-arvoa varten lasketaan osoittajan ja nimittäjän derivaatat erikseen, eikä osamäärän derivaattaa.
  3. L’Hôpitalin sääntöä saa soveltaa toistuvasti, kunnes raja-arvo ei enää suoran sijoituksen jälkeen ole epämääräisessä muodossa (kts. edellisen esimerkin kohta 3).

Esimerkki 5.5.4

Olkoon n luonnollinen luku. Tutkitaan raja-arvoa \displaystyle\lim_{x\to\infty}\frac{e^x}{x^n} soveltamalla toistuvasti l’Hôpitalin sääntöä.

\begin{split}\begin{aligned} &\lim_{x\to\infty}\frac{e^x}{x^n} =\lim_{x\to\infty}\frac{e^x}{nx^{n-1}} =\lim_{x\to\infty}\frac{e^x}{n(n-1)x^{n-2}} =\lim_{x\to\infty}\frac{e^x}{n(n-1)(n-2)x^{n-3}}\\ &=\cdots =\lim_{x\to\infty}\frac{e^x}{n(n-1)(n-2)\cdots 2x^1} =\lim_{x\to\infty}\frac{e^x}{n(n-1)(n-2)\cdots 2\cdot1} =\infty. \end{aligned}\end{split}

Sama tulos on voimassa muillekin kuin reaaliluvun x kokonaislukueksponenteille,

\lim_{x\to\infty}\frac{e^x}{x^a}=\infty,

kun a > 0. Vastaasti voidaan osoittaa, että

\lim_{x\to\infty}\frac{x^a}{\ln x}=\infty,

kun a > 0.

Edellisen esimerkin vertailut antavat keinon asettaa eksponentti-, potenssi- ja logaritmifunktiot kasvunopeuden suhteen järjestykseen.

Huomautus 5.5.5

Olkoon a>0. Tällöin

  1. eksponenttifunktio e^x kasvaa nopeammin kuin mikään potenssifunktio x^a, ja
  2. logaritmifunktio \ln x kasvaa hitaammin kuin mikään potenssifunktio x^a.
Voidaanko l’Hôpitalin sääntöä käyttää toispuoleisten raja-arvojen laskemiseen. Toisin sanoen, voidaanko säännön todistuksessa oleva päättely toistaa esimerkiksi tapauksessa a\to 0+?

Miksi l’Hôpitalin sääntöä ei voi käyttää raja-arvon

\lim\limits_{x\to \infty} \dfrac{x+\sin{x}}{x}

laskemiseen? Merkitään vaihtoehdoissa f(x)=x+\sin{x} ja g(x)=x.

Jos l’Hôpitalin sääntöä ei voi käyttää, voidaanko yllä esitetty raja-arvo silti laskea? Raja-arvo muokattuna on

\lim_{x\to \infty} \left( 1 + \frac{\sin{x}}{x} \right),

joten

Mitä voidaan sanoa luvun viimeisen esimerkin perusteella raja-arvosta

\lim_{x\to \infty} \frac{\ln{x}}{e^x}?
Palautusta lähetetään...