Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bff}{\mathbf{f}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bi}{\mathbf{i}} \newcommand{\bj}{\mathbf{j}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bn}{\mathbf{n}} \newcommand{\bo}{\mathbf{0}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bs}{\mathbf{s}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\nv}{\mathbf{0}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\rA}{\mathrm{A}} \newcommand{\rB}{\mathrm{B}} \newcommand{\rC}{\mathrm{C}} \newcommand{\rD}{\mathrm{D}} \newcommand{\rE}{\mathrm{E}} \newcommand{\rF}{\mathrm{F}} \newcommand{\rG}{\mathrm{G}} \newcommand{\rH}{\mathrm{H}} \newcommand{\rI}{\mathrm{I}} \newcommand{\rJ}{\mathrm{J}} \newcommand{\rK}{\mathrm{K}} \newcommand{\rL}{\mathrm{L}} \newcommand{\rM}{\mathrm{M}} \newcommand{\rN}{\mathrm{N}} \newcommand{\rO}{\mathrm{O}} \newcommand{\rP}{\mathrm{P}} \newcommand{\rQ}{\mathrm{Q}} \newcommand{\rR}{\mathrm{R}} \newcommand{\rS}{\mathrm{S}} \newcommand{\rT}{\mathrm{T}} \newcommand{\rU}{\mathrm{U}} \newcommand{\rV}{\mathrm{V}} \newcommand{\rW}{\mathrm{W}} \newcommand{\rX}{\mathrm{X}} \newcommand{\rY}{\mathrm{Y}} \newcommand{\rZ}{\mathrm{Z}} \newcommand{\pv}{\overline} \newcommand{\iu}{\mathrm{i}} \newcommand{\ju}{\mathrm{j}} \newcommand{\im}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imag}{\operatorname{Im}} \newcommand{\Arg}{\operatorname{Arg}} \newcommand{\Ln}{\operatorname{Ln}} \DeclareMathOperator*{\res}{res} \newcommand{\re}{\operatorname{Re}} \newcommand{\im}{\operatorname{Im}} \newcommand{\arsinh}{\operatorname{ar\,sinh}} \newcommand{\arcosh}{\operatorname{ar\,cosh}} \newcommand{\artanh}{\operatorname{ar\,tanh}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\proj}{\operatorname{proj}} \newcommand{\rref}{\operatorname{rref}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\Span}{\operatorname{span}} \newcommand{\vir}{\operatorname{span}} \renewcommand{\dim}{\operatorname{dim}} \newcommand{\alg}{\operatorname{alg}} \newcommand{\geom}{\operatorname{geom}} \newcommand{\id}{\operatorname{id}} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\tp}[1]{#1^{\top}} \renewcommand{\d}{\mathrm{d}} \newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]} \newcommand{\piste}{\cdot} \newcommand{\qedhere}{} \newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]} \newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]} \newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|} \newcommand{\trans}{\mathrm{T}} \newcommand{\EUR}{\text{\unicode{0x20AC}}} \newcommand{\SI}[3][]{#2\,\mathrm{#3}} \newcommand{\si}[2][]{\mathrm{#2}} \newcommand{\num}[2][]{#2} \newcommand{\ang}[2][]{#2^{\circ}} \newcommand{\meter}{m} \newcommand{\metre}{\meter} \newcommand{\kilo}{k} \newcommand{\kilogram}{kg} \newcommand{\gram}{g} \newcommand{\squared}{^2} \newcommand{\cubed}{^3} \newcommand{\minute}{min} \newcommand{\hour}{h} \newcommand{\second}{s} \newcommand{\degreeCelsius}{^{\circ}C} \newcommand{\per}{/} \newcommand{\centi}{c} \newcommand{\milli}{m} \newcommand{\deci}{d} \newcommand{\percent}{\%} \newcommand{\Var}{\operatorname{Var}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Corr}{\operatorname{Corr}} \newcommand{\Tasd}{\operatorname{Tasd}} \newcommand{\Ber}{\operatorname{Ber}} \newcommand{\Bin}{\operatorname{Bin}} \newcommand{\Geom}{\operatorname{Geom}} \newcommand{\Poi}{\operatorname{Poi}} \newcommand{\Hyperg}{\operatorname{Hyperg}} \newcommand{\Tas}{\operatorname{Tas}} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\tdist}{\operatorname{t}} \newcommand{\rd}{\mathrm{d}}

Marginaalijakaumat

Oletetaan, että satunnaismuuttujien X ja Y yhteisjakauman, eli satunnaisvektorin (X, Y) tiheysfunktio f(x, y) tunnetaan. Usein halutaan tutkia tapahtumia, joissa vain toisen muuttujan arvoja rajoitetaan. Tällöin siis tarkkaillaan satunnaiskokeen tuloksia vain muuttujan X osalta, ja ollaan siis kiinnostuneita siihen liittyvästä jakaumasta. Tälle satunnaisvektorin (X, Y) komponentin X marginaalijakaumalle (marginal distribution) voidaan muodostaa tiheysfunktio, ja sitä merkitään f_1(x). Vastaavasti myös komponentin Y marginaalijakaumalle löytyvää tiheysfunktiota merkitään f_2(y). Kyseessä on yhden satunnaismuuttujan tiheysfunktio, joka muodostetaan yhteisjakauman perusteella.

Äärellisen otosavaruuden diskreetin satunnaisvektorin tapauksessa marginaalijakaumat saadaan taulukoimalla ja laskemalla todennäköisyyksien rivi- ja sarakesummia seuraavan esimerkin mukaan.

Esimerkki 2.5.1

Aikaisemman esimerkin 2.4.1 satunnaisvektorissa (X, Y) molempien komponenttien omat otosavaruudet ovat \Omega_X = \Omega_Y = \{0, 1, 2\}. Merkitään taulukkoon muuttujan X mahdolliset arvot riveille, muuttujan Y mahdolliset arvot sarakkeisiin, sekä satunnaisvektorin (X, Y) tiheysfunktion f(x, y) = \frac{1}{12}(x + 2y) arvot risteämäkohtiin.

\begin{split}\begin{array}{cc|ccc|c} & & & x & & \\ & & 0 & 1 & 2 & \sum \\\hline & 0 & 0 & \frac{1}{12} & \frac{2}{12} & \frac{3}{12} \\ y & 1 & \frac{2}{12} & \frac{3}{12} & 0 & \frac{5}{12} \\ & 2 & \frac{4}{12} & 0 & 0 & \frac{4}{12} \\\hline & \sum & \frac{6}{12} & \frac{4}{12} & \frac{2}{12} & \frac{12}{12} = 1 \end{array}\end{split}

Muuttujan X marginaalijakaumassa Y voi saada mitä tahansa arvoja, joten sen tiheysfunktio f_1(x) saadaan taulukon sarakesummista, jolloin

f_1(0) = \frac{6}{12} = \frac{1}{2}, \qquad f_1(1) = \frac{4}{12} = \frac{1}{3} \qquad\text{ja}\qquad f_1(2) = \frac{2}{12} = \frac{1}{6}.

Vastaavasti muuttujan Y marginaalijakauman tiheysfunktio f_2(y) saadaan taulukon rivisummista, jolloin

f_2(0) = \frac{3}{12} = \frac{1}{4}, \qquad f_2(1)=\frac{5}{12} \qquad\text{ja}\qquad f_2(2) = \frac{4}{12} = \frac{1}{3}.

Näitä marginaalijakaumia voi käyttää normaalisti, kun tapahtuma koskee vain yhtä satunnaismuuttujaa. Esimerkiksi

P(Y>0)=P(Y=1)+P(Y=2)=\frac{5}{12}+\frac{4}{12}=\frac{9}{12}=\frac{3}{4}

Mikä seuraavassa diskreetin satunnaisvektorin marginaalijakauman muodostamista kuvaavassa taulukossa on väärin? Käytetty tiheysfunktio on f(x, y) = 2x^3 + y ja \Omega_X = \{0,2,4\} sekä \Omega_Y = \{1,3\}.

\begin{split}\begin{array}{c|cc|c} x\backslash y & 1 & 3 & \sum \\\hline 0 & 1 & 3 & 4 \\ 2 & 17 & 19 & 36 \\ 4 & 129 & 131 & 260 \\\hline \sum & 147 & 153 & 300 \end{array}\end{split}

Jatkuvan satunnaisvektorin kohdalla marginaalijakaumien tiheysfunktiot saadaan “integroimalla toisen muuttujan vaikutus pois” seuraavan lauseen mukaisesti.

Lause 2.5.2

Jatkuvan satunnaisvektorin (X, Y), jonka tiheysfunktio on f(x, y), komponenttien X ja Y marginaalijakaumien tiheysfunktiot ovat

f_1(x)=\int_{-\infty}^\infty f(x,y)\,\rd y\qquad\text{ja}\qquad f_2(y)=\int_{-\infty}^\infty f(x,y)\,\rd x.
Piilota/näytä todistus

Satunnaismuuttujaan X liittyvä tapahtuma A \subseteq \R voidaan esittää myös satunnaisvektorin tapahtumana \{(x, y) : x \in A, y \in \R\} \subseteq \R^2, joten

\begin{aligned} P(X \in A) &= P(X \in A, Y \in \R) = \int_A\left(\int_{-\infty}^\infty f(x,y)\,\rd y\right)\rd x = \int_A f_1(x)\,\rd x, \end{aligned}

missä f_1(x)=\int_{-\infty}^\infty f(x,y)\,\rd y on tiheysfunktion määritelmän nojalla muuttujan X marginaalijakauman tiheysfunktio. Toinen väite todistuu vastaavasti.

Määritelmä 2.5.3

Satunnaisvektorin (X, Y) sanotaan olevan tasajakautunut (uniformly distributed) joukossa \Omega \subset \R^2, (X,Y)\sim\Tas(\Omega), jos sen tiheysfunktio

f(x, y) = \frac{1}{a(\Omega)}, \qquad\text{kun } (x, y) \in \Omega,

missä a(\Omega) = \iint_{\Omega} 1\,\rd x\rd y on joukon \Omega pinta-ala. Jos tapahtuma A\subseteq\Omega, niin

P(A) = \frac{a(A)}{a(\Omega)} = \frac{\iint_A 1\,\rd x\rd y}{\iint_{\Omega} 1\,\rd x\rd y}.

Esimerkki 2.5.4

Olkoon satunnaisvektori (X, Y) tasajakautunut pisteiden (0, 0), (1, 0) ja (1, 1) rajaamaan kolmioon. Kolmion ala on \frac{1}{2}, joten satunnaisvektorin (X, Y) tiheysfunktio

f(x,y)=2,\qquad\text{kun } (x, y) \in \Omega = \{(x, y) \in \R^2 : 0 \leq x \leq 1, 0 \leq y \leq x\}

Vektorin komponenttien marginaalijakaumien tiheysfunktiot ovat

f_1(x) = \int_{-\infty}^\infty f(x,y)\,\rd y = \int_0^{x}2\,\rd y = 2x, \qquad\text{kun } x \in \Omega_X = [0, 1]

ja

f_2(y)=\int_{-\infty}^\infty f(x,y)\,\rd x = \int_{y}^1 2\,\rd x = 2(1 - y), \qquad\text{kun } y \in \Omega_Y = [0, 1].
Palautusta lähetetään...