Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bff}{\mathbf{f}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bi}{\mathbf{i}} \newcommand{\bj}{\mathbf{j}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bn}{\mathbf{n}} \newcommand{\bo}{\mathbf{0}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bs}{\mathbf{s}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\nv}{\mathbf{0}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\rA}{\mathrm{A}} \newcommand{\rB}{\mathrm{B}} \newcommand{\rC}{\mathrm{C}} \newcommand{\rD}{\mathrm{D}} \newcommand{\rE}{\mathrm{E}} \newcommand{\rF}{\mathrm{F}} \newcommand{\rG}{\mathrm{G}} \newcommand{\rH}{\mathrm{H}} \newcommand{\rI}{\mathrm{I}} \newcommand{\rJ}{\mathrm{J}} \newcommand{\rK}{\mathrm{K}} \newcommand{\rL}{\mathrm{L}} \newcommand{\rM}{\mathrm{M}} \newcommand{\rN}{\mathrm{N}} \newcommand{\rO}{\mathrm{O}} \newcommand{\rP}{\mathrm{P}} \newcommand{\rQ}{\mathrm{Q}} \newcommand{\rR}{\mathrm{R}} \newcommand{\rS}{\mathrm{S}} \newcommand{\rT}{\mathrm{T}} \newcommand{\rU}{\mathrm{U}} \newcommand{\rV}{\mathrm{V}} \newcommand{\rW}{\mathrm{W}} \newcommand{\rX}{\mathrm{X}} \newcommand{\rY}{\mathrm{Y}} \newcommand{\rZ}{\mathrm{Z}} \newcommand{\pv}{\overline} \newcommand{\iu}{\mathrm{i}} \newcommand{\ju}{\mathrm{j}} \newcommand{\im}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imag}{\operatorname{Im}} \newcommand{\Arg}{\operatorname{Arg}} \newcommand{\Ln}{\operatorname{Ln}} \DeclareMathOperator*{\res}{res} \newcommand{\re}{\operatorname{Re}} \newcommand{\im}{\operatorname{Im}} \newcommand{\arsinh}{\operatorname{ar\,sinh}} \newcommand{\arcosh}{\operatorname{ar\,cosh}} \newcommand{\artanh}{\operatorname{ar\,tanh}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\proj}{\operatorname{proj}} \newcommand{\rref}{\operatorname{rref}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\Span}{\operatorname{span}} \newcommand{\vir}{\operatorname{span}} \renewcommand{\dim}{\operatorname{dim}} \newcommand{\alg}{\operatorname{alg}} \newcommand{\geom}{\operatorname{geom}} \newcommand{\id}{\operatorname{id}} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\tp}[1]{#1^{\top}} \renewcommand{\d}{\mathrm{d}} \newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]} \newcommand{\piste}{\cdot} \newcommand{\qedhere}{} \newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]} \newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]} \newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|} \newcommand{\trans}{\mathrm{T}} \newcommand{\EUR}{\text{\unicode{0x20AC}}} \newcommand{\SI}[3][]{#2\,\mathrm{#3}} \newcommand{\si}[2][]{\mathrm{#2}} \newcommand{\num}[2][]{#2} \newcommand{\ang}[2][]{#2^{\circ}} \newcommand{\meter}{m} \newcommand{\metre}{\meter} \newcommand{\kilo}{k} \newcommand{\kilogram}{kg} \newcommand{\gram}{g} \newcommand{\squared}{^2} \newcommand{\cubed}{^3} \newcommand{\minute}{min} \newcommand{\hour}{h} \newcommand{\second}{s} \newcommand{\degreeCelsius}{^{\circ}C} \newcommand{\per}{/} \newcommand{\centi}{c} \newcommand{\milli}{m} \newcommand{\deci}{d} \newcommand{\percent}{\%} \newcommand{\Var}{\operatorname{Var}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Corr}{\operatorname{Corr}} \newcommand{\Tasd}{\operatorname{Tasd}} \newcommand{\Ber}{\operatorname{Ber}} \newcommand{\Bin}{\operatorname{Bin}} \newcommand{\Geom}{\operatorname{Geom}} \newcommand{\Poi}{\operatorname{Poi}} \newcommand{\Hyperg}{\operatorname{Hyperg}} \newcommand{\Tas}{\operatorname{Tas}} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\tdist}{\operatorname{t}} \newcommand{\rd}{\mathrm{d}}

Sarake- ja nolla-avaruus yhtälönratkaisussa

Seuraavaksi tarkastellaan näihin sarake- ja nolla-avaruutta informaatiota matriisiyhtälön A\bx = \bb ratkaisun näkökulmasta.

Jos sarakeavaruus \cR(A) on tiedossa, voidaan selvittää, onko matriisiyhtälöllä A\bx = \bb ratkaisuja. Sarakeavaruus \cR(A) nimittäin koostuu niistä vektoreista \bb, joita kohden yhtälöllä A\bx = \bb on vähintään yksi ratkaisu.

Lause 4.10.1

Olkoon A m \times n-matriisi, sekä \bb avaruuden \R^m vektori. Yhtälöllä A\bx = \bb on ratkaisuja, jos ja vain jos \bb \in \cR(A)

Piilota/näytä todistus

Oletetaan ensin, että yhtälöllä A\bx = \bb on ratkaisuja. Olkoon \bv eräs ratkaisu. Tällöin A\bv = \bb. Nyt sarakeavaruuden määritelmän nojalla \bb \in \cR(A).

Oletetaan sitten, että \bb \in \cR(A). Nyt sarakeavaruuden määritelmän nojalla on olemassa \bv \in \R^n, jolle pätee A\bv = \bb. Siten yhtälöllä A\bx = \bb on ratkaisu.

Jos tunnetaan matriisin nolla-avaruus sekä jokin yhtälön ratkaisu, saadaan selville kaikki ratkaisut.

Lause 4.10.2

Olkoon A m \times n-matriisi, sekä \bb avaruuden \R^m vektori. Olkoon \bx_0 yhtälön A\bx = \bb jokin ratkaisu. Tällöin yhtälön ratkaisut ovat täsmälleen muotoa \bx_0 + \by, missä \by \in \cN(A).

Piilota/näytä todistus

Osoitetaan, että \bv \in \R^n on yhtälön A\bx = \bb ratkaisu, jos ja vain jos \bv=\bx_0 + \by jollakin \by \in \cN(A).

Oletetaan ensin, että \bv \in \R^n on yhtälön A\bx = \bb ratkaisu. Nyt täytyy löytää nolla-avaruuden \cN(A) alkio \by, jolle pätee \bv=\bx_0 + \by. Valitaan \by=\bv-\bx_0. Nyt

A(\bv-\bx_0)=A\bv-A\bx_0=\bb-\bb=\nv.

Siten \by \in \cN(A). Lisäksi \bv=\bx_0 + \by.

Oletetaan sitten, että \bv=\bx_0 + \by jollakin \by \in \cN(A). On osoitettava, että \bv on yhtälön A\bx = \bb ratkaisu. Nähdään, että

A\bv=A(\bx_0 + \by)=A\bx_0 + A\by=\bb+\nv=\bb.

Siten \bv on yhtälön A\bx = \bb ratkaisu.

Esimerkki 4.10.3

Olkoon

\begin{split}A = \begin{augmatrix}{crcc} 1 & 2 & 2 & 0 \\ 1 & -2 & 1 & 1 \\ \end{augmatrix}\qquad\text{ja}\qquad \bb = \begin{augmatrix}{r} 1 \\ -1 \end{augmatrix}.\end{split}

Esitetään yhtälön A\bx = \bb ratkaisut muodossa \bx_0 + \by, missä \bx_0 on yksittäisratkaisu ja \by homogeenisen yhtälön yleinen ratkaisu.

Kirjoitetaan yhtälöryhmä A\bx = \bb kokonaismatriisina

\begin{split}\begin{augmatrix}{crcc|r} 1 & 2 & 2 & 0 & 1 \\ 1 & -2 & 1 & 1 & -1 \end{augmatrix}.\end{split}

Kun matriisia muokataan alkeisrivimuuunnoksilla, saadaan redusoitu porrasmatriisi

\begin{split}\begin{augmatrix}{cccr|c} 1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \end{augmatrix}.\end{split}

Tästä nähdään, että yhtälöryhmän ratkaisu on

\begin{split}\begin{cases} x_1 = -(3/2)t - (1/2)s \\ x_2 = 1/2 - (1/4)t + (1/4)s \\ x_3 = t \\ x_4 = s, \end{cases} \qquad \text{missä } t, s \in \R.\end{split}

Vektorimuodossa kirjoitettuna ratkaisu on

\begin{split}\bx = \begin{augmatrix}{c} 0 \\ \frac{1}{2}\\ 0 \\0 \end{augmatrix} +t\begin{augmatrix}{r} -\frac{3}{2} \\ -\frac{1}{4}\\ 1 \\0 \end{augmatrix} +s\begin{augmatrix}{r} -\frac{1}{2} \\ \frac{1}{4}\\ 0 \\1 \end{augmatrix}.\end{split}

Merkitään

\begin{split}\bx_0=\begin{augmatrix}{c} 0 \\ \frac{1}{2}\\ 0 \\0 \end{augmatrix} \qquad\text{ja}\qquad\by=t \begin{augmatrix}{r} -\frac{3}{2} \\ -\frac{1}{4}\\ 1 \\0 \end{augmatrix} +s\begin{augmatrix}{r} -\frac{1}{2} \\ \frac{1}{4}\\ 0 \\1 \end{augmatrix}.\end{split}

Osoittautuu, että nämä vektorit toteuttava vaaditut ehdot:

\begin{split}A\bx_0 = \begin{augmatrix}{crcc} 1 & 2 & 2 & 0 \\ 1 & -2 & 1 & 1 \\ \end{augmatrix} \begin{augmatrix}{c} 0 \\ \frac{1}{2}\\ 0 \\0 \end{augmatrix} = \begin{augmatrix}{r} 1 \\ -1 \end{augmatrix} = \bb\end{split}

ja

\begin{split}A\by = \begin{augmatrix}{crcc} 1 & 2 & 2 & 0 \\ 1 & -2 & 1 & 1 \end{augmatrix} \begin{augmatrix}{c} -\frac{1}{2}(3t + s) \\ -\frac{1}{4}(t - s) \\ t \\ s \end{augmatrix} = \begin{augmatrix}{c} -\frac{1}{2}(3t + s) - \frac{1}{2}(t - s) + 2t \\ -\frac{1}{2}(3t + s) + \frac{1}{2}(t - s) + t + s \end{augmatrix} = \begin{augmatrix}{c} 0 \\ 0 \end{augmatrix} = \bzero,\end{split}

joten haluttu esitys on löydetty.

Koska lineaariset yhtälöryhmät voidaan kirjoittaa matriisiyhtälöinä, voidaan tässä osiossa esitettyjä tuloksia soveltaa lineaarisiin yhtälöryhmiin.

Palautusta lähetetään...