Peruslaskutoimitukset¶
Havaitaan, että kompleksilukujen summa ja tulo ovat myös kompleksilukuja, sillä edellisessä määritelmässä luvut \(a + c\), \(b + d\), \(ac - bd\) ja \(ad + bc\) ovat reaalilukuja. Kompleksiluvusta käytetään myös merkintöjä
Kompleksilukuja voidaan havainnollistaa esittämällä ne pisteinä tai vektoreina kompleksitasossa (complex plane), kuten alla olevassa kuvassa.
Kompleksiluku \(a + 0i\) samastetaan reaaliluvun \(a\) kanssa ja merkitään \(a + 0i = a\). Niinpä voidaan sanoa, että jokainen reaaliluku on myös kompleksiluku. Samoin voidaan merkitä \(0 + bi = bi\). Erityisesti
Imaginaariyksikkö \(i\) on siis myös kompleksiluku. Otetaan käyttöön seuraava kompleksilukua \(z=a+bi\) koskeva terminologia.
- \(a = \operatorname{Re}z\) on luvun \(z\) reaaliosa ja \(b = \operatorname{Im}z\) on luvun \(z\) imaginaariosa.
- Jos \(b = 0\), luku \(z\) on reaalinen.
- Jos \(b \ne 0\), luku \(z\) on imaginaarinen.
- Jos \(a = 0\) ja \(b \ne 0\), luku \(z\) on puhtaasti imaginaarinen.
Kompleksiluvut \(z\) ja \(w\) ovat samoja, jos niiden reaali- ja imaginaariosat ovat samoja. Toisin sanoen \(z = w\) jos ja vain jos \(\operatorname{Re}z = \operatorname{Re}w\) ja \(\operatorname{Im}z = \operatorname{Im}w\).
Lasketaan reaaliluvun \(t=t+0i\) ja kompleksiluvun \(a+bi\) tulo määritelmän mukaan.
eli samaan tulokseen päästään vain kertomalla sekä reaali- että imaginaariosa luvulla \(t\). Tiivistetysti voidaan todeta, että kompleksilukujen summa, vastaluku, erotus ja reaaliluvulla kertominen toimivat täsmälleen samoin kuin tasovektorien vastaavat operaatiot. Näiden geometriset tulkinnat voidaan siis esittää kuten alla.
Esimerkki.
- \(\operatorname{Re}(-2-3i)=-2\) ja \(\operatorname{Im}(-2-3i)=-3\)
- \((3-2i)-(-5+3i)=8-5i\)
Kompleksilukujen kertolaskun määritelmästä seuraa mielenkiintoinen ja hyödyllinen luvun \(i\) ominaisuus.
Lause.
\(i^2=i\cdot i=-1\).
Kirjoitetaan \(i=0+1i\) ja lasketaan tulo määritelmän mukaan. Nyt \(a=c=0\) ja \(b=d=1\), joten
\(\square\)
Käsitellään seuraavaksi kompleksilukuja \(a+bi\) ja \(c+di\) kuten reaalisia binomeja ja lasketaan niiden tulo käyttämällä tulosta \(i^2 = -1\).
Tulos on sama kuin kertolaskun määritelmässä, joten kompleksilukujen tulo voidaan laskea kuten binomien tulo osittelulakia käyttäen. Tulon geometriseen tulkintaan palataan myöhemmin.
Esimerkki.
\((-3-2i)(5+i)=-15-3i-10i-2i^2=-13-13i\).
Reaaliluvuille \(a=a+0i\) ja \(b=b+0i\) kompleksilukujen laskutoimitukset antavat samat tulokset kuin vastaavat reaaliset laskutoimitukset. Lisäksi seuraavan lauseen mukaan kaikkia tuttuja laskusääntöjä saa soveltaa myös kompleksilukuja käsiteltäessä
Lause.
Kun \(x\), \(y\) ja \(z\) ovat kompleksilukuja, niin
- \(x + y = y + x\) ja \(xy = yx\) (vaihdantalait),
- \(x + (y + z) = (x + y) + z\) ja \(x(yz) = (xy)z\) (liitäntälait),
- \(x(y + z) = xy + xz\) (osittelulaki).
Nämä voidaan todistaa suorilla laskuilla, kun sopivissa välivaiheissa sovelletaan reaalilukujen laskusääntöjä. Todistetaan esimerkkinä tulon vaihdantalaki. Merkitään \(x=x_1+x_2i\) ja \(y=y_1+y_2i\). Tällöin
Muut kohdat vastaavasti. \(\square\)
Lause.
Jokaisella kompleksiluvulla \(z\ne0\) on olemassa yksikäsitteinen käänteisluku (reciprocal) \(z^{-1}\), joka toteuttaa ehdon \(zz^{-1}=1\).
Käänteisluvun olemassaolo ja yksikäsitteisyys on todistettava erikseen. Olkoon \(z=a+bi\ne0\) ja merkitään
Suoralla laskulla nähdään, että
eli luku \(w\) toteuttaa käänteisluvun ehdon. Täten \(z^{-1} = w\) on olemassa.
Yksikäsitteisyyden osoittamiseksi väitetään, että \(u\) ja \(v\) ovat luvun \(z \not= 0\) käänteislukuja, eli esimerkiksi \(uz = 1\) ja \(zv = 1\). Tällöin kuitenkin välttämättä
eli luvut \(u\) ja \(v\) ovat samat. Täten käänteisluku on yksikäsitteinen. \(\square\)
Koska jokaiselle nollasta poikkeavalle kompleksiluvulle löytyy käänteisluku, niille on mahdollista määritellä jakolasku vastaavasti kuin reaaliluvuille.
Lemma.
Jos \(z \not= 0\) ja \(w \not= 0\) ovat kompleksilukuja, niin \((zw)^{-1} = z^{-1}w^{-1}\), eli
Määritelmän nojalla \(zz^{-1}=1\) ja \(ww^{-1}=1\), joten tulon liitännäisyyden ja vaihdannaisuuden nojalla
Niinpä \(z^{-1}w^{-1}\) on luvun \(zw\) käänteisluku. \(\square\)
Tästä tuloksesta seuraa, että tavanomainen laventaminen ja supistaminen on luvallista myös kompleksiluvuilla. Jos \(z\ne0\), niin \(zz^{-1} = 1\) ja siten
Laventaminen tarjoaa yksinkertaisimman tavan etsiä kompleksiluvun käänteisluku. Suoralla laskulla voidaan tarkistaa, että \((a + bi)(a - bi) = a^2 + b^2\), missä \(a\) ja \(b\) ovat reaalisia. Tällöin myös luku \(a^2 + b^2\) on reaalinen, eli
joka on sama luku kuin aiemmassa todistuksessa.
Esimerkki.
- Etsi luvun \(2 + 3i\) käänteisluku muodossa \(a + bi\).
- Ilmoita luku \(\dfrac{3 - 4i}{-2 + i}\) muodossa \(a + bi\).
- Ratkaise \(z\) muodossa \(a + bi\) yhtälöstä \((2 - i)z = 1 + i\).
Hyödynnetään sopivalla luvulla laventamista.
Lavennetaan luvulla \(2 - 3i\).
\[(2+3i)^{-1}=\frac{1}{2+3i}=\frac{2-3i}{(2+3i)(2-3i)}=\frac{2-3i}{4-9i^2}=\frac{2-3i}{13}=\frac{2}{13}-\frac{3}{13}i\]Lavennetaan luvulla \(-2 - i\).
\[\frac{3-4i}{-2+i}=\frac{(3-4i)(-2-i)}{(-2+i)(-2-i)}=\frac{-10+5i}{5}=-2+i\]Ratkaisu on olemassa, sillä luvulla \(2 - i\) on käänteisluku. Jaetaan yhtälö puolittain sillä ja lavennetaan luvulla \(2 + i\).
\[z=\frac{1+i}{2-i}=\frac{(1+i)(2+i)}{(2-i)(2+i)}=\frac{1+3i}{5}=\frac15+\frac35i\]