\[\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bff}{\mathbf{f}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bi}{\mathbf{i}}
\newcommand{\bj}{\mathbf{j}}
\newcommand{\bk}{\mathbf{k}}
\newcommand{\bN}{\mathbf{N}}
\newcommand{\bn}{\mathbf{n}}
\newcommand{\bo}{\mathbf{0}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bs}{\mathbf{s}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\nv}{\mathbf{0}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\pv}{\overline}
\newcommand{\iu}{\mathrm{i}}
\newcommand{\ju}{\mathrm{j}}
\newcommand{\re}{\operatorname{Re}}
\newcommand{\im}{\operatorname{Im}}
\newcommand{\arsinh}{\operatorname{ar\,sinh}}
\newcommand{\arcosh}{\operatorname{ar\,cosh}}
\newcommand{\artanh}{\operatorname{ar\,tanh}}
\newcommand{\sgn}{\operatorname{sgn}}
\newcommand{\diag}{\operatorname{diag}}
\newcommand{\proj}{\operatorname{proj}}
\newcommand{\rref}{\operatorname{rref}}
\newcommand{\rank}{\operatorname{rank}}
\newcommand{\Span}{\operatorname{span}}
\newcommand{\vir}{\operatorname{span}}
\renewcommand{\dim}{\operatorname{dim}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\geom}{\operatorname{geom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\newcommand{\tp}[1]{#1^{\top}}
\renewcommand{\d}{\mathrm{d}}
\newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}}
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]}
\newcommand{\piste}{\cdot}
\newcommand{\qedhere}{}
\newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]}
\newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]}
\newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|}\]
Terminologiaa
Differentiaaliyhtälö, DY (ordinary differential equation, ODE) on yhtälö
\[F(x, y, y', y'', \ldots, y^{(n)}) = 0,\]
jossa esiintyy yksi muuttuja \(x\), siitä riippuva tuntematon funktio \(y=y(x)\), sekä sen derivaattoja \(y', y'',\ldots, y^{(n)}\). Kaikki nämä liittyvät toisiinsa lausekkeella \(F\). Differentiaaliyhtälön ratkaisemisella tarkoitetaan kaikkien
sellaisten funktioiden \(y\) määrittämistä, jotka toteuttavat yhtälön. Vertaa tätä tavallisen yhtälön ratkaisemiseen, jossa tuntemattomana on funktion sijaan luku.
Seuraavat peruskäsitteet on syytä hallita.
- Differentiaaliyhtälön kertaluku (order) on suurin yhtälössä esiintyvien derivaattojen
kertaluvuista.
- Yksittäisratkaisu (solution) on yksittäinen funktio \(y\), joka toteuttaa differentiaaliyhtälön.
- Yleinen ratkaisu (general solution) on kaava tai esitysmuoto, joka antaa yhtälön kaikki ratkaisut, usein yhden tai useamman parametrin avulla esitettynä.
- Erikoisratkaisu (particular solution) on ratkaisu, joka poikkeaa muodoltaan muista ratkaisuista tai on muuten erikoisasemassa.
- Alkuarvotehtävässä (initial value problem) haetaan ratkaisua \(y\), joka toteuttaa yhden
tai useampia funktiolle \(y\) ja sen derivaatoille asetettuja
alkuehtoja (initial condition) \(y(x_0)=y_0\), \(y'(x_0)=y_1,\ldots\).
Esimerkki 7.2.1
Yhtälö
\[2xy'(x)+y'''(x)y(x)=\frac{1}{x}e^{y(x)}\]
on kolmannen kertaluvun differentiaaliyhtälö. Monesti funktion \(y\) muuttuja jätetään kirjoittamatta, eli merkitään lyhyesti
\[2xy'+y'''y=\frac{1}{x}e^y.\]
Esimerkki 7.2.2
Tarkastellaan differentiaaliyhtälöä \(y' = y^2\). Tälle yhtälölle \(y_1(x)=-\frac{1}{x+1}\) on yksittäisratkaisu, kuten sijoittamalla nähdään.
\[y'=\frac{1}{(x+1)^2}=\left(-\frac{1}{x+1}\right)^2=y^2\]
Yhtälön yleinen ratkaisu on
(1)\[y(x)=-\dfrac{1}{x+C},\quad C\in\R,\quad(x\ne -C),\]
missä \(C\in\R\) ja \(x \not= -C\). Tämän lisäksi yhtälöllä on erikoisratkaisu \(y_0(x)=0\). Myöhemmin perustellaan, miksi yhtälön kaikki ratkaisut erikoisratkaisua lukuunottamatta ovat tätä muotoa.
Löydetyistä ratkaisuista alkuehdon \(y(0)=2\) toteuttaa ratkaisu
\[y_2(x)=-\dfrac{1}{x-\frac12}=\dfrac{2}{1-2x},\]
eli \(y_2\) on alkuarvotehtävän \(y' = y^2\) ja \(y(0)=2\) ratkaisu.
Seuraavaan kuvaan on piirretty kaavan (1) mukaisen differentiaaliyhtälön ratkaisuparven funktiot parametrin \(C\) arvoilla \(-1,0,1\) ja \(2\) (ohuet käyrät) sekä alkuarvotehtävän ratkaisu, joka kulkee pisteen \((0,2)\) kautta.
Huomautus 7.2.3
Alkuarvo-ongelmien lisäksi on olemassa myös toinen tekniikan ongelmissa tärkeä ongelmaluokka, eli reuna-arvo-ongelmat. Tällöin differentiaaliyhtälö ratkaistaan jollakin annetulla välillä \([x_0,x_1]\). Tehtävänä on etsiä ratkaisua, joka totettaa funktiolle ja sen derivaatoille annetut reunaehdot välin päätepisteissä \(x_0\) ja \(x_1\). Esimerkkinä lujuusopista välillä \([0,L]\) palkin taipumaviivan differentiaaliyhtälö
\[EIv''''=q,\]
jossa reunaehtoina (nivelin päistä kiinnitetty palkki)
\[v(0)=0,\ v(L)=0,\ v''(0)=0,\ v''(L)=0.\]