- MATH.APP.440
- 1. Kompleksiluvut
- 1.1 Kompleksiluvut
Kompleksiluvut¶
Tässä luvussa käydään läpi kompleksilukujen määritelmä ja niihin liittyvät peruskäsitteet, niiden muodostaman algebrallisen rakenteen perusominaisuudet, geometrinen tulkinta, kompleksinen juuri sekä topologian peruskäsitteitä. Nämä esitetään mahdollisimman suppeasti ja useiden yksinkertaisten tulosten perusteleminen jätetään lukijalle. Todistettavat tulokset on valittu siten, että lukijalle syntyisi mielikuva siitä, kuinka näitä helpohkoja todistuksia voi tehdä. Aluksi oleellista on hahmottaa, kuinka kompleksilukujen kanssa toimitaan, sillä niiden opettelu jo näin alkuvaiheessa auttaa huomattavasti myöhemmässä osassa kurssia, kun keskitytään täysin uuteen asiaan. Toisaalta nämä perusasiat kertautuvat jatkossa ja niihin viitataan tarvittaessa.
Kompleksiluvut voidaan mieltää reaalilukupareina, mutta vasta niille määritellyt yhteen- ja kertolaskut antavat kompleksiluvuille niiden tyypilliset ominaisuudet. Kompleksiluvuilla laskeminen hoituu varsin samaan tapaan kuin reaaliluvuilla, kun taas niiden geometrinen tulkinta on hyvin pitkälle samanlaista kuin tason vektoreilla. Esimerkiksi kompleksiluvut voidaan esittää kulman ja pituuden avulla napakoordinaattimuodossa aivan kuten tason vektorit. Polaarimuodon avulla kätevästi saatava kompleksisen juuren esitys taas osoittaa, että valitsemalla kompleksilukujen esitystapa sopivasti voi helpottaa ongelman hahmottamista ja käsittelyä. Käytännössä topologiset ominaisuudet ovat samat kuin karteesisen tason R2 vektorien topologia ja siksi tässä lähinnä tyydytään esittelemään käsitteet, joita tarvitaan myöhemmin, ja tutustumaan niihin esimerkkien kautta.
Jatkossa huomataan, että kuten kompleksilukujen peruslaskenta ja geometrinen tulkinta myös monet kompleksinanalyysin tulokset ovat tuttuja reaalianalyysistä ja/tai käyttävät hyväksi niitä. Tämän vuoksi vahvat pohjatiedot (usean muuttujan) reaalianalyysista ja vektorilaskennasta auttavat jatkossa (vaikkakaan eivät missään nimessä ole pakollisia).
Kompleksiluvut saivat alkunsa yrityksistä ratkaista polynomiyhtälöitä, kuten
Kummallakaan niistä ei ole asteensa verran reaalisia ratkaisuja, mutta käyttämällä sokeasti tuttuja reaalilukujen laskusääntöjä voidaan ajatella, että
ja
Tavanomaisen määritelmän mukaan siis −1+√−1 on ensimmäisen ja 2+√−3 toisen yhtälön ratkaisu. Nämä eivät kuitenkaan ole reaalilukuja! Tästä “mahdottomuudesta” alkoi kompleksilukujen matemaattisen teorian kehitys. Lisätietoa kompleksilukujen historiasta löytyy tästä artikkelista. Viihdyttävä johdatus ja historiallinen kertaus löytyy taas tästä videosta.
Pohdi 1.1.1
Miksi negatiivisen reaaliluvun neliöjuurta ei voida pitää reaalilukuna?
Määritelmä 1.1.2
Kompleksiluku on reaalilukujen x ja y pari, jota merkitään lausekkeena x+iy. Symbolia i kutsutaan imaginaariyksiköksi. Kompleksilukujen joukko on C={x+iy∣x,y∈R}. Kompleksiluvun x+iy reaaliosa on Re(z)=x ja imaginaariosa on Im(z)=y. Kompleksiluvut z1 ja z2 ovat samat, jos Re(z1)=Re(z2) ja Im(z1)=Im(z2).
Kompleksiluku x+iy voidaan ymmärtää myös reaalilukuparina (x,y)∈R2. Tästä syystä kompleksilukujen joukkoa C kutsutaan myös kompleksitasoksi, ja sitä voidaan havainnollistaa karteesisen tason R2 tapaan koordinaatistona. Seuraava tulkinta kuitenkin erottaa kompleksiluvut järjestetyistä pareista: jos z∈C ja Im(z)=0, niin z=x+i⋅0=x jollekin reaaliluvulle x, ja siten z∈R. Toisin sanoen reaaliluvut sisältyvät kompleksilukujen joukkoon, R⊂C. Näin ei voida sanoa suoraan reaaliluvuista ja karteesisesta tasosta.
Kompleksiluvut reaalilukupareina eivät ole kovin mielenkiintoisia, vaan käyttökelpoinen ja erittäin mukavia ominaisuuksia omaava algebrallinen rakenne saadaan määrittelemällä kompleksiluvuille sopivat yhteen- ja kertolaskut. Tämä voidaan tehdä reaalilukujen yhteen- ja kertolaskun avulla.
Määritelmä 1.1.3
Olkoot kompleksiluvut z1=x1+iy1 ja z2=x2+iy2. Tällöin summa
ja tulo
Kompleksiluvut yhdessä yllä esitettyjen yhteen- ja kertolaskutoimitusten kanssa muodostavat kunnan (C,+,⋅), eli seuraavat laskusäännöt (kunta-aksioomat) ovat voimassa.
- z1+z2∈C ja z1z2∈C aina, kun z1,z2∈C (suljettuus).
- z1+z2=z2+z1 ja z1z2=z2z1 aina, kun z1,z2∈C (vaihdannaisuus).
- (z1+z2)+z3=z1+(z2+z3) ja (z1z2)z3=z1(z2z3) aina, kun z1,z2,z3∈C (liitännäisyys).
- z1(z2+z3)=z1z2+z1z3 aina, kun z1,z2,z3∈C (osittelulaki).
- On olemassa yksikäsitteinen kompleksiluku 0=0+i⋅0, jolle z+0=z aina, kun z∈C (nolla-alkio).
- Aina, kun z∈C, on olemassa yksikäsitteinen kompleksiluku −z, jolle z+(−z)=0 (vastaluku).
- On olemassa yksikäsitteinen kompleksiluku 1=1+i⋅0, jolle 1z=z aina, kun z∈C (ykkösalkio).
- Aina, kun z∈C∖{0}, on olemassa yksikäsitteinen kompleksiluku z−1, jolle zz−1=1 (käänteisluku).
Esimerkki 1.1.4
Todistetaan kompleksilukujen osittelulaki. Oletetaan, että zk=xk+iyk reaaliluvuille xk ja yk, kun k∈{1,2,3}. Tällöin
joten
Reaalilukujen osittelulain, sekä summan ja tulon vaihdannaisuuden ja liitännäisyyden avulla päätellään edelleen, että
Koska
voidaan todeta, että z1(z2+z3)=z1z2+z1z3, kuten väitettiinkin.
Muiden kunta-aksioomien todistaminen jätetään edellisen kaltaisiksi harjoitustehtäviksi. Peruslaskutoimitukset seuraavat tavalliseen tapaan summan ja tulon määritelmistä.
Määritelmä 1.1.5
Olkoot kompleksiluvut z1=x1+iy1 ja z2=x2+iy2. Tällöin erotus
Jos lisäksi z2≠0, niin osamäärä
Jos z∈C ja n∈Z, niin potenssi
On tärkeää huomata, että edellä imaginaariyksikköä i on käsitelty vain symbolina, jolla erotetaan toisistaan kompleksiluvun reaali- ja imaginaariosat. Sille saadaan kuitenkin myös hyvin konkreettinen tulkinta omana kompleksilukunaan. Tämä perustuu täysin siihen, että imaginaariyksikön i sovitaan esittävän kompleksilukua 0+i1.
Lause 1.1.6
Imaginaariyksikön neliö i2=−1.
Väite seuraa suoraan kompleksiluvun potenssin määritelmästä, kun i=0+i1:
Huomautus 1.1.7
Imaginaariyksikköä merkitään joskus mukavuussyistä i=√−1. Tämä ei kuitenkaan ole yleisesti käytetty merkintätapa, joten sen kanssa on syytä olla hyvin varovainen.
Kun nyt yhdistetään kompleksilukujen osittelulaki, reaalilukujen tulkinta kompleksilukuina ja tulos i2=−1, saadaan seuraava miellyttävä laskutapa kompleksilukujen tulolle. Jos z1=x1+iy1 ja z2=x2+iy2, missä reaaliluvut x1, x2, y1 ja y2 tulkitaan kompleksilukuina, niin osittelulain, sekä vaihdannaisuus- ja liitännäisyyslakien nojalla
Sijoittamalla i2=−1 päätellään, että
mikä on tulon z1z2 määritelmä. Kompleksilukujen tulo voidaan laskea siis täsmälleen samoin kuin reaalisten binomien tulo, kun imaginaariyksikköä pidetään tuntemattomana, ja sieventää lopuksi perusmuotoiseksi kompleksiluvuksi käyttämällä tietoa i2=−1.
Esimerkki 1.1.8
Kompleksilukujen 1+2i ja 3−i summa, tulo ja erotus ovat
Luvun 1+2i käänteisluku (1+2i)−1 on 15−25i, sillä
Täten osamäärä
Huomautus 1.1.9
Kompleksiluvun merkinnän x+iy rinnalla käytetään saumattomasti myös merkintää x+yi. Molemmat tarkoittavat samaa asiaa, joskin näistä jälkimmäinen on tyypillisempi silloin, kun käsitellään konkreettisia lukuarvoja x ja y.
Reaalilukujen itseisarvon määritelmää on syytä laajentaa kompleksilukuja varten. Intuitiona käytetään edelleen sitä, että luvun itseisarvo kertoo sen etäisyyden origosta. Karteesisen tason pisteiden (0,0) ja (x,y) etäisyys voidaan tuttuun tapaan päätellä Pythagoraan lauseen avulla. Lisäksi on hyödyllistä käsitellä kompleksiluvun “peilikuvaa x-akselin suhteen”.
Määritelmä 1.1.10
Olkoon kompleksiluku z=x+iy. Tällöin luvun z itseisarvo, eli moduli on reaaliluku
ja luvun z liittoluku, eli kompleksikonjugaatti on kompleksiluku
Kuva 1.1.1. Kompleksiluvun itseisarvo on sen etäisyys origosta ja liittoluku sen peilikuva reaaliakselin suhteen.
Kompleksilukuja voidaan todellakin havainnollistaa karteesisessa tasossa kuten kuvassa 1.1.1 pitämällä reaaliosaa x-koordinaattina ja imaginaariosaa y-koordinaattina. Havainnollistuksessa käytetyn kompleksitason vaaka- ja pystyakseleita kutsutaan reaali- ja imaginaariakseleiksi. Näin saadaan myös itseisarvolle ja liittoluvulle geometrinen tulkinta. Kuvissa esiintyvän kulman ϕ tulkintaan palataan myöhemmin.
Huomautus 1.1.11
Vaikka kompleksilukujen juuria ei vielä olekaan määritelty, on syytä muistuttaa että niiden reaalisten vastineiden kaavat √a2=|a| ja a2=|a|2 eivät ole yleisesti voimassa kompleksiluvuille. Esimerkiksi
ja
Seuraavien hyödyllisten aputulosten todistaminen jätetään pääosin harjoitustehtäviksi. Todistukset on helpointa muotoilla merkitsemällä kompleksiluvut reaali- ja imaginaariosien avulla, ja sen jälkeen noudattamalla laskutoimitusten määritelmiä.
Lemma 1.1.12
Olkoot z1, z2 ja z kompleksilukuja. Tällöin
- ¯z1+z2=¯z1+¯z2,
- ¯z1z2=¯z1¯z2,
- ¯¯z=z,
- z¯z=|z|2,
- z−1=¯z|z|2, jos z≠0.
- |z1z2|=|z1||z2|,
- |¯z|=|z|,
- z+¯z=2Re(z)≤2|z|,
- z−¯z=2iIm(z),
- ||z1|−|z2||≤|z1±z2|≤|z1|+|z2| (kolmioepäyhtälö).
Todistetaan esimerkin vuoksi kohdat 2, 8 ja 10. Oletetaan, että z=x+iy reaaliluvuille x ja y ja että zk=xk+iyk reaaliluvuille zk ja yk, kun k∈{1,2}. Tällöin
Näin kohta 2 on todistettu. Kohtaa 8 varten todetaan ensin, että
Epäyhtälön todistamista varten muistetaan, että x≤|x|=√x2≤√x2+y2, kun x ja y ovat mielivaltaisia reaalilukuja, joten
Mainittu epäyhtälö seuraa tästä. Kolmioepäyhtälön todistamista varten todetaan, että kohtien 4, 1, 3, 8, 6 ja 7 perusteella
Tässä sekä |z1+z2| että |z1|+|z2| ovat ei-negatiivisia reaalilukuja, jolloin myös
Loput osat väitteestä seuraavat tästä (harjoitustehtävä).
Kompleksiluvut toteuttavat muodoltaan saman kolmioepäyhtälön kuin reaaliluvut ja avaruuden Rn vektoritkin. Ainoa ero näiden välillä on itseisarvon paikalla käytettävän operaation määritelmä (reaalilukujen itseisarvo, vektorin normi). Geometrisesti kolmioepäyhtälö ilmaisee sen, että yksikään kompleksitason pisteiden muodostaman kolmion sivuista ei ole kahden muun sivun summaa suurempi (kuva 1.1.2). Tästä seuraa myös, että kompleksitason pisteiden välinen lyhyin reitti on niiden välinen jana.
Kuva 1.1.2. Kolmion jokainen sivu on lyhyempi kuin kahden muun sivun pituuksien summa.
Edellisen lemman avulla kompleksilukujen z1 ja z2 jakolaskulle saadaan myös miellyttävä laskukaava
Laventamalla nimittäjän liittoluvulla saadaan reaalinen nimittäjä, joka voidaan ositella osamäärän reaali- ja imaginaariosien määrittämiseksi.
Esimerkki 1.1.13
Osamäärä
kuten esimerkissä 1.1.8. Vastaavasti käänteisluku
Kompleksilukuja käsittelevät yhtälöt kannattaa usein palauttaa yhtäsuuruuden määritelmän avulla reaali- ja imaginaariosien yhtäsuuruuteen.
Esimerkki 1.1.14
Etsi kaikki kompleksiluvut, jotka toteuttavat yhtälön
Jos z=x+iy, niin
Koska reaaliluvut ovat samat jos ja vain jos niiden reaali- ja imaginääriosat ovat samat, niin
Siis y=−2, ja sijoittamalla tämä ylempään yhtälöön nähdään, että
Neliöidään ja sievennetään, jolloin saadaan yhtälö 4=2x+1, eli x=32. Alkuperäisen yhtälön ainoa ratkaisu on siis z=32−2i.