Hyperboliset funktiot ja niiden käänteisfunktiot¶
Monissa sovelluksissa esiintyy tiettyjä funktioiden \(e^x\) ja \(e^{-x}\) kombinaatioita, joille annetaan omat nimensä käsittelyn helpottamiseksi.
Kaikkien hyperbolisten funktioiden määrittelyjoukoksi käy koko reaalilukujen joukko \(\mathbb R\). Funktioiden kuvaajat on hahmoteltu kuvaan. Hyperbolisen sinin arvojoukko on \(\mathbb R\), hyperbolisen kosinin \([1,\infty)\) ja hyperbolisen tangentin \((-1,1)\).
Esimerkki.
Ratkaise yhtälö \(\sinh x=3\).
Hyödynnetään hyperbolisen sinin määritelmää ja lavennetaan lausekkeella \(e^x\).
Koska \(e^{x} \not= 0\), yhtälö voidaan kirjoittaa muodossa \(e^{2x} - 6e^x - 1 = 0\), joka on toisen asteen polynomiyhtälö muuttujanaan \(e^{x}\). Täten
eli \(x=\ln(3+\sqrt{10})\approx1{,}8184\).
Hyperbolisille funktioille on voimassa monia samantapaisia kaavoja kuin trigonometrisille funktioille, kuten
Ne on helppo johtaa tarvittaessa määritelmiin perustuvalla suoralla laskulla.
Kuten mistä tahansa funktiosta, myös hyperbolisista funktioista saadaan surjektioita rajoittamalla niiden maalijoukko arvojoukoksi. Hyperbolinen sini ja tangentti ovat aidosti kasvavia funktioita joukossa \(\mathbb R\) ja hyperbolinen kosini joukossa \([0,\infty)\), joten näissä joukoissa ne ovat myös injektioita. Täten niille voidaan määritellä käänteisfunktiot.
Areafunktioille voidaan kehittää myös lausekkeet hyperbolisten funktioiden määritelmien avulla. Tässä voidaan edetä kuten aiemmassa esimerkissä, mutta merkitsemällä symbolisesti \(\sinh x = y\). Areasinin, areakosinin ja areatangentin säännöt ovat seuraavanlaiset.